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Abstract

Recent years have seen a large and growing literature on the environmental Kuznets curve
(EKC) that resorts in a large part to cointegration techniques. The EKC literature has failed to
acknowledge that such regressions involve unit root nonstationary regressors and their integer
powers (e.g. GDP and GDP squared), which behave differently from linear cointegrating regres-
sions. In this paper we provide the necessary tools for EKC analysis by deriving estimation and
testing theory for cointegrating equations including stationary regressors, deterministic regres-
sors, unit root nonstationary regressors and their integer powers. In particular we consider fully
modified OLS estimation, specification tests based on augmented and auxiliary regressions, as
well as a sub-sample KPSS type test for cointegration. We present some simulation results illus-
trating the performance of the estimators and tests. In the empirical application for CO2 and
SO2 emissions for 19 early industrialized countries over the period 1870–2000 we find evidence
for the prevalence of an EKC in roughly half of the countries.

JEL Classification: C12, C13, Q20

Keywords: Integrated Process, Nonlinear Transformation, Fully Modified Estimation, Nonlin-
ear Cointegration Analysis, Environmental Kuznets Curve
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1 Introduction

Since the seminal work of Grossmann and Krueger (1993, 1995) many econometric studies of the

relationship between measures of economic development (typically proxied by per capita GDP) and

pollution, respectively emissions, have been conducted. Survey articles like Stern (2004) or Yandle,

Bjattarai, and Vijayaraghavan (2004) count more than one-hundred refereed publications. Most

of the papers focus on a specific conjecture, the so called ‘environmental Kuznets curve’ (EKC)

hypothesis, which postulates an inverted U-shaped relationship between the level of economic de-

velopment and the degree of income inequality. The term EKC refers by analogy to the inverted

U-shaped relationship between the level of economic development and the degree of income in-

equality postulated by Kuznets (1955) in his 1954 presidential address to the American Economic

Association.

The largest part of the empirical EKC literature estimates parametric EKCs, however, also other

estimation strategies have been followed in the empirical EKC literature: non-parametric EKCs (see

e.g. Millimet, List, and Stengos, 2003), semi-parametric EKCs (see e.g. Bertinelli and Strobl, 2005)

or EKCs using spline interpolations (see e.g. Schmalensee, Stoker, and Judson, 1998). Within the

parametric EKC literature many studies rely upon unit root and cointegration analysis given the

widespread non-rejection of the unit root hypothesis for GDP. With the exception of very few

papers who note and bypass in one way or another the associated problems (see Bradford, Fender,

Shore, and Wagner, 2005; Müller-Fürstenberger and Wagner, 2007; Wagner, 2008), the empirical

EKC literature fails to acknowledge the implications of the presence of nonlinear transformations

of unit root processes. In a typical EKC, compare (19) below, emissions are regressed on GDP and

GDP squared. Since (log per capita) GDP is often well characterized as being a unit root process,

GDP squared is a nonlinear transformation of an integrated process and regressions involving such

processes require different asymptotic theory than the usual ‘linear’ unit root and cointegration

analysis.

In this paper we derive the asymptotic distributions of both the OLS estimator as well as of a

fully modified OLS (FM-OLS) estimator of equations containing deterministic variables, stationary

regressors, integrated regressors and integer powers of integrated regressors. The results we obtain

resemble in several respects that of linear cointegration analysis as derived in Phillips and Hansen

(1990) and rely upon the important contributions of Chang, Park, and Phillips (2001) and Park

and Phillips (1999, 2001). First, the OLS estimator is consistent, but its limiting distribution is
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contaminated by so called second order bias terms, rendering valid inference infeasible. Second, the

proposed FM-OLS estimator has a limiting distribution that is free of second order biases and thus

forms the basis for asymptotically valid χ2-inference for certain hypotheses. Third, this property

of the limiting distribution of the FM-OLS estimator also forms the basis for specification testing

based on augmented respectively auxiliary regressions including higher order polynomial powers of

the integrated regressors and/or polynomial powers of additional integrated regressors. In this re-

spect we consider tests based on both the Wald and Lagrange Multiplier testing principles. Fourth,

we consider a KPSS type (compare Kwiatkowski, Phillips, Schmidt, and Shin, 1992) cointegration

test to directly test the null hypothesis of nonlinear cointegration for a given specification. Since

the asymptotic distribution of this test is contaminated by nuisance parameters we follow Choi and

Saikkonen (2005) and present a sub-sample version of the test that has an asymptotic distribution

free of nuisance parameters. Since the sub-sample test can be used in conjunction with the Bonfer-

roni bound we investigate the potential performance gains that can be realized by using adjusted

Bonferroni bound test procedures that are less conservative, such as those proposed in Simes (1986)

or Rom (1990).

We conduct a small simulation study to assess the performance of the proposed methods. The

findings show that the FM-OLS correction has only modest effects on the biases of the coefficients

estimated by FM-OLS compared to the – also consistent – OLS estimates. The effects are much

larger on the tests, whose performance hinges crucially on applying appropriate FM-OLS correc-

tions. The Wald and Lagrange Multiplier tests behave very similarly and perform very well in

terms of size. Their power performance depends, as expected, quite strongly upon the auxiliary

regressors as well as the alternative considered. With respect to the sub-sample KPSS type tests

we note that all considered modifications of the Bonferroni bound lead to very similar performance

in the simulations. The KPSS type tests tend to be undersized for small samples and their power

increases quite slowly with the sample size. However, their power is quite similar for all considered

alternatives, which is consistent with the fact that the KPSS type tests are not specified against

any particular alternative.

After the simulations we turn to the empirical analysis where we study the relationship between

CO2 respectively SO2 emissions and GDP for a panel of 19 early developed countries over the

period 1870–2000. When considering a quadratic formulation of the EKC we find support, based

on the LM specification test, for eight countries for CO2 emissions and for five countries SO2

emissions. Allowing for smooth asymmetries by modeling a cubic EKC leads to non-rejections of a
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nonlinear cointegrating relationship in three more countries for both CO2 and SO2 emissions. The

turning points implied by the FM-OLS coefficient estimates are with very few exceptions reasonable

in-sample values.

The paper is organized as follows. In Section 2 we derive the asymptotic results for the estimators

and tests. Section 3 contains a small simulation study to assess the finite sample performance of

the proposed methods and Section 4 contains the results of the EKC analysis. Section 5 briefly

summarizes and concludes. Two appendices follow the main text: Appendix A contains the proofs of

all propositions and Appendix B collects additional material related to the empirical EKC analysis.

We use the following notation: As usual, the symbols ⇒ and →p signify weak convergence

and convergence in probability, respectively. Definitional equality is signified by :=. Further,

aT = O(Tn) (respectively aT = Op(Tn)) denotes that {aT } is at most of order Tn (in probability).

Standard Brownian motions are denoted as W (r) or in short W , whereas Brownian motions with

non-identity covariance matrices (specified in the context) are denoted with B(r) or B. For integrals

of the form
∫ 1
0 B(s)ds and

∫ 1
0 B(s)dB(s) we use short-hand notation

∫
B and

∫
BdB. For notational

simplicity we also often drop function arguments. With bxc we denote the integer part of x ∈ R and

diag(·) denotes a diagonal matrix with the entries specified throughout. E denotes the expected

value and L denotes the backward-shift operator, i.e. L{xt}t∈Z = {xt−1}t∈Z.

2 Econometric Theory

2.1 Setup and Assumptions

We consider the following equation including stationary regressors wit, i = 1, . . . , n, a constant,

polynomial time trends up to power q and integer powers of integrated regressors xjt, j = 1, . . . , m

up to degrees pj

yt = w′tθw + D′
tθD +

m∑

j=1

X ′
jtθXj + ut , for t = 1, . . . , T, (1)

with wt := [w1t, . . . , wnt]′, Dt := [1, t, t2, . . . , tq]′, xt := [x1t, . . . , xmt]′, Xjt := [xjt, x
2
jt, . . . , x

pj

jt ]
′

and the parameter vectors θD ∈ Rq+1, θw ∈ Rn and θXj ∈ Rpj . Furthermore define for later use

Xt := [X ′
1t, . . . , X

′
mt]

′, Zt := [w′t, D′
t, X

′
t]
′ and p :=

∑m
j=1 pj .
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In a more compact way,

y = wθw + DθD + XθX + u (2)

= Zθ + u,

with y := [y1, . . . , yT ]′, u := [u1, . . . , uT ]′, Z := [w D X] and θ = [θ′w θ′D θ′X ]′ ∈ R(q+1)+n+p and

w :=




w′1
...

w′T


 ∈ RT×n, D :=




D′
1

...
D′

T


 ∈ RT×(q+1), X :=




X ′
1

...
X ′

T


 ∈ RT×p.

Let us next state the assumptions concerning the regressors and the error processes:

Assumption 1 The processes {∆xt}t∈Z, {wt}t∈Z and {ut}t∈Z are generated as

∆xt = vt = Cv(L)εt =
∞∑

j=0

cvjεt−j

wt = Cw(L)ηt =
∞∑

j=0

cwjηt−j

ut = Cu(L)ζt =
∞∑

j=0

cujζt−j ,

with the conditions

det(Cv(1)) 6= 0,
∞∑

j=0

j||cvj || < ∞ ,
∞∑

j=0

j1/2||cwj || < ∞ ,
∞∑

j=0

j1/2|cuj | < ∞.

Furthermore we assume that the regressors are predetermined, i.e. we assume that the process

{ξ0
t }t∈Z = {[ε′t+1, η

′
t+1, ζt]′}t∈Z is a stationary and ergodic martingale difference sequence with na-

tural filtration Ft = σ
({

ξ0
s

}t

−∞
)

and denote the (conditional) covariance matrix by

Σ0 =




Σεε Σεη Σεζ

Σηε Σηη Σηζ

Σζε Σζη σ2
ζ


 := E(ξ0

t (ξ0
t )′|Ft−1) > 0.

We also assume that Σww := Ewtw
′
t is positive definite.

The above assumptions allow to draw (by slight extension) on the asymptotic results of Chang, Park,

and Phillips (2001), Park and Phillips (1999, 2001) and Hong and Phillips (2008).1 Considering the

stationary regressors to have zero mean is only done for convenience and is not a restriction since

1The main difference to the assumptions of Chang, Park, and Phillips (2001) is, using the notation of this paper,
that they assume ut = ζt.
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typically an intercept will be included in a regression. The assumption det(Cv(1)) 6= 0 together

with positive definiteness of Σεε implies that xt is an integrated but not cointegrated process,

whereas Σww > 0 is mainly put in place for convenience as it is likely to be fulfilled in all practical

applications.

The further additionally required moment assumptions given below are similar to those formu-

lated in Chang, Park, and Phillips (2001).

Assumption 2 For the process {ξ0
t }t∈Z the following conditions hold:

1. supt≥1 E(‖ξ0
t ‖r|Ft−1) < ∞ a.s. for some r > 4.

2. E
(
(ξ0

i,t)
2ξ0

j,t−l

)
= 0 for all i, j and for all l ≥ 1.

3. εt is i.i.d. with E(|ε|r) < ∞ for some r > 8 and its distribution function is absolutely

continuous with respect to the Lebesgue measure and for the characteristic function ϕ it holds

that ϕ(λ) = o(|λ|−δ) as λ →∞ for some δ > 0.

The above assumptions are sufficient for the following invariance principle to hold for {ξt}t∈Z =

{[v′t+1, w
′
t+1, ut]′}t∈Z using the Beveridge-Nelson decomposition (compare Phillips and Solo, 1992)

1√
T

[Tr]∑

t=1

ξt ⇒ B(r) =




Bv(r)
Bw(r)
Bu(r)


 . (3)

Note here that it holds that B(r) = Ω1/2W (r) with the long-run covariance matrix Ω :=
∑∞

h=−∞ E (ξ0ξ
′
h).

We also define the one-sided long-run covariance Λ :=
∑∞

h=0 E (ξ0ξ
′
h) and both covariance matrices

are partitioned according to the partitioning of ξt, i.e.:

Ω =




Ωvv Ωvw Ωvu

Ωwv Ωww Ωwu

Ωuv Ωuw ωuu


 , Λ =




Λvv Λvw Λvu

Λwv Λww Λwu

Λuv Λuw λuu


 .

When referring to quantities corresponding to only one of the nonstationary regressors and its

powers, e.g. Xjt, we use the according notation, e.g. Bvj (r) or Λvju.

To study the asymptotic behavior of the estimators, we next introduce appropriate weighting

matrices, whose entries reflect the divergence rates of the corresponding variables. Thus, denote

with G(T ) = diag{Gw(T ), GD(T ), GX(T )}, where for notational brevity we often use G := G(T ).
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The three diagonal sub-matrices are given by:

Gw(T ) :=




T−1/2

. . .
T−1/2


 ∈ Rn×n, GD(T ) :=




T−1/2

. . .
T−(q+1/2)


 ∈ R(q+1)×(q+1),

GX(T ) :=




GX1

. . .
GXm


 ∈ Rp×p with GXj :=




T−1

. . .

T−
pj+1

2


 ∈ Rpj×pj .

Using these weighting matrices, we can define the following limits of the major building blocks. For

t such that limT→∞ t/T = r the following results hold:

lim
T→∞

√
TGD(T )Dt = lim

T→∞




1
. . .

T−q







1
...
tq


 =




1
...
rq


 =: D(r)

lim
T→∞

√
TGXj (T )Xjt = lim

T→∞




T−1/2

. . .
T−pj/2







xjt
...

x
pj

jt


 =




Bvj

...
B

pj
vj


 =: Bvj (r),

separating here the coordinates of vt = [v1t, . . . , vmt]′ corresponding to the different variables

xjt. The first result is immediate and the second follows from Chang, Park, and Phillips (2001,

Lemma 5). The stacked vector of the scaled polynomial transformations of the integrated processes

is denoted as Bv(r) := [Bv1(r)
′, . . . ,Bvm(r)′]′. We are confident that D as defined in (2) is not

confused with D(r) defined above even when the latter is used in abbreviated form D in integrals.

Remark 1 More general deterministic components can be included with the necessary condition

being that the correspondingly defined limit quantity satisfies
∫

DD′ > 0, i.e. that the considered

functions are linearly independent in L2[0, 1]. This allows in addition to the polynomial trends on

which we focus in this paper e.g. also to include time dummies, broken trends or trigonometric

functions of time (compare the discussion in Park, 1992).

The relationship postulated in (1) is restrictive in the sense that e.g. no cross-products of the

form xm
it x

n
jt or tmxn

jt are included. Considering such cross-terms increases not only the flexibility of

the functional form but also immediately allows for an interpretation of the estimated relationship

as a Taylor expansion of an unknown nonlinear function. The theory developed in this paper,

based on the underlying results of Park and Phillips (1999, 2001), can be extended to include

these cross-terms. However, the curse of dimensionality will often limit the practical usefulness of
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specifications including all cross-terms. Also for the empirical application in this paper we consider

only one integrated regressor, namely per capita GDP.

2.2 OLS Estimation

We first study the asymptotic behavior of the OLS estimator. As in the linear cointegration case,

its limiting distribution is contaminated by nuisance parameters due to serial correlation in the

error process {ut}t∈Z and endogeneity of {∆Xt}t∈Z. Both of these aspects are very similar to those

in the linear case as in Phillips and Hansen (1990) and are summarized in Proposition 1.

Proposition 1 Let yt be generated from (1) with the regressors Zt and errors ut satisfying As-

sumptions 1 and 2. Then the asymptotic distribution of the OLS estimator θ̂ := (Z ′Z)−1Z ′y is

given by

G−1(θ̂ − θ) =




G−1
w (θ̂w − θw)

G−1
D (θ̂D − θD)

G−1
X (θ̂X − θX)




⇒




Σ−1
wwNwu[∫
D̃D̃′

]−1 {∫
D̃dBu −

∫
DB′

v

[∫
BvB′

v

]−1
M

}
[∫

B̃vB̃′
v

]−1 {∫
B̃vdBu.v +

∫
B̃vdB′

vΩ
−1
vv Ωvu + M

}


 , (4)

where Bu.v(r) := Bu(r) − ΩuvΩ−1
vv Bv(r) with corresponding variance ωu.v := ωu − ΩuvΩ−1

vv Ωvu

and Nwu := limT→∞ 1√
T

∑T
t=1 wtut. The random variable Nwu is normally distributed with mean

Σwu := E(wtut) and variance depending upon the coefficients cw,j, cu,j, Σηη and σ2
ζ given in As-

sumption 1. Furthermore

D̃ := D −
∫

DB′
v

(∫
BvB′

v

)−1

Bv ,

B̃v := Bv −
∫

BvD
′
(∫

DD′
)−1

D,

and

M :=




M1
...

Mm


 where Mj := Λvju




1
2

∫
Bvj (r)dr

...
pj

∫
Bvj (r)

pj−1dr


 . (5)

The limiting distribution of the consistent OLS estimator displayed in (4) is contaminated by so-

called second order bias terms: the serial correlation bias and the endogeneity bias, using the same
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names in our nonlinear setup as used in the limiting distribution of the OLS estimator in the linear

cointegration case (see Phillips and Hansen, 1990). Note that when Xt is strictly exogenous, these

bias terms vanish with Λvu = Ωvu = 0. If this is not the case, standard inference on the parameters

becomes invalid due to the presence of these bias terms.

Remark 2 Note that the serial correlation bias term M , which is due to correlation between ut

and vt, appears not only in the limiting distribution of θ̂X , but also in that of θ̂D, reflecting the

asymptotic correlation between deterministic and stochastic trends. Thus, putting these two blocks

of the coefficient vector θ together in θN :=
[

θ′D θ′X
]′, we can explicitly identify the source of the

serial correlation bias by writing the limiting distribution of the OLS estimator of θD as

G−1
N

(
θ̂N − θN

)
⇒

(∫
JJ ′

)−1 {∫
JdBu +

(
0(q+1)×1

M

)}
,

for J(r) :=
[

D(r)′ Bv(r)′
]′ and GN := diag (GD, GX).

2.3 Fully Modified OLS Estimation

Two ways to remove the bias terms present in the OLS limiting distributions have been proposed

in the cointegration literature. These are fully modified OLS (FM-OLS) estimation (see Phillips

and Hansen, 1990) based on a direct non-parametric correction and dynamic OLS (D-OLS) esti-

mation (see Saikkonen, 1991) where the correction is achieved by running lead and lag augmented

regressions. In this paper we consider FM-OLS estimation which requires consistent estimators of

the bias terms. In this respect define

M∗ :=




M∗
1

...
M∗

m


 , M∗

j := Λ̂+
vju




T
2

∑
xjt

...
pj

∑
x

pj−1
jt


 , (6)

with a consistent estimator Λ̂+
vju := Λ̂vju−Ω̂uvΩ̂−1

vv Λ̂vvj . Once appropriately scaled the quantity M∗

in (6) converges to M as given in (5), which in conjunction with using the transformed dependent

variable2 y+
t := yt − Ω̂uvΩ̂−1

vv vt, y+ := [y+
1 , . . . , y+

T ]′ leads to an asymptotic distribution that is free

of bias terms as summarized in the following Proposition 2.

2For notational simplicity we ignore the dependence of y+ upon the specific consistent long-run covariance esti-
mator chosen.
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Proposition 2 Let yt be generated by (1) with the regressors Zt and errors ut satisfying Assump-

tions 1 and 2. Define the FM-OLS estimator of θ as

θ̂+ := (Z ′Z)−1
(
Z ′y+ −A∗

)
,

with

A∗ :=




0m×1

0(q+1)×1

M∗


 ,

with M∗ as given in (6) with consistent estimators of the required long-run (co)variances. Then

the asymptotic distribution of θ̂+ is given by

G−1
(
θ̂+ − θ

)
=




G−1
w (θ̂+

w − θw)
G−1

D (θ̂+
D − θD)

G−1
X (θ̂+

X − θX)


 ⇒




Σ−1
wwNwu.v[∫

D̃D̃′
]−1 ∫

D̃dBu.v[∫
B̃vB̃′

v

]−1 ∫
B̃vdBu.v


 , (7)

with a normally distributed mean zero random variable Nwu.v := limT→∞ 1√
T

∑T
t=1 wtu

+
t , where

u+
t := ut − Ω̂uvΩ̂−1

vv vt.

Using the quantities defined in Remark 2 it holds more compactly written that G−1
N

(
θ̂+
N − θN

)
⇒

(∫
JJ ′

)−1 ∫
JdBu.v. The limiting distribution of G−1

N (θ̂+
N − θN ) is free of second order bias terms

and mixed normal with mean zero. This stems from the fact that the vector B̃v is, by construction,

independent of Bu.v.

The discussion and results in Phillips and Hansen (1990, Theorem 5.1 and discussion on p. 106)

show that the special form of the FM-OLS limiting distribution allows for asymptotic χ2-inference

for testing certain linear hypothesis on the coefficients by using the Wald test. A similar result

that allows to test for certain hypotheses, which we formulate for notational convenience for θN as

defined in Remark 2, can be established in our setup.

Proposition 3 Let yt be generated by (1) with the regressors Zt and errors ut satisfying Assump-

tions 1 and 2. Consider s linearly independent restrictions collected in

H0 : RθN = r,

with R ∈ Rs×q+1+p with full rank s and r ∈ Rs. Furthermore let ω̂u.v denote a consistent estimator

of ωu.v. Then it holds with ZN = [D X] that the Wald statistic

W :=
(
Rθ̂+

N − r
)′ [

ω̂u.vR
(
Z ′NZN

)−1
R′

]−1 (
Rθ̂+

N − r
)

(8)
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is under the null hypothesis asymptotically distributed as χ2
s if each of the s hypotheses in H0 only

involves coefficients with the same convergence rate.

The above result implies that for instance the appropriate t-statistic for coefficient θi, with θi a

component of θN , given by tθi := θ̂+
i√

ω̂u.v(Z′Z)−1
[i,i]

, is asymptotically standard normally distributed.

Note furthermore that hypothesis testing for the coefficients θw can simply be based on their

asymptotic normal distribution.

2.4 Specification Testing based on Augmented and Auxiliary Regressions

Testing the correct specification of equation (1) is clearly an important issue. In this respect

we are particularly interested in the prevalence of cointegration, i.e. stationarity of ut. Absence

of cointegration can be due to several reasons. First, there is no cointegrating relationship of any

functional form between yt and xt. Second, yt and xt are nonlinearly cointegrated but the functional

relationship is different than postulated by equation (1). This case covers the possibilities of missing

higher order polynomial terms or cointegration with a different functional form of the relationship.

Third, the absence of cointegration is due to missing explanatory variables in equation (1).

In a general formulation all the above possibilities can be cast into a testing problem within the

augmented regression

yt = Z ′tθ + F (xt, qt, θF ) + φt, (9)

where F is such that F (xt, gt, 0) = 0 and qt denotes additional integrated regressors. If cointegration

prevails in (1) then θF = 0 and φt = ut.

In many cases the researcher will not have a specific parametric formulation in mind for the

function F (·), which implies that typically the unknown F (·) is replaced by a partial sum ap-

proximation. This approach has a long tradition in specification testing in a stationary setup, see

Ramsey (1969), Phillips (1983), Lee, White, and Granger (1993) or de Benedictis and Giles (1998).

Given our FM-OLS results it appears convenient to replace the unknown F (·) by using polynomial

powers of the integrated regressors, which will include higher order powers larger than pj for the

components xjt of xt and powers larger equal than 1 for the additional integrated regressors qit.

Of course this simple approach is also subject to the discussion in the introduction in that no

multivariate expansion is considered. However, for specification analysis the advantage of a parsi-

monious setup may outweigh the potential disadvantages of considering only univariate polynomials
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since a test based on such a formulation will also have power against alternatives where e.g. prod-

ucts terms are present. Clearly, the power properties of tests based on univariate polynomials

depend upon the unknown alternative F (·) and will be the more favorable the more F (·) ‘resem-

bles’ univariate polynomials. This trade-off is exactly the same as in the stationary case, as also

discussed in Hong and Phillips (2008).

Denote with X̄jt := [xpj+1
jt , x

pj+2
jt , . . . , x

pj+rj

jt ]′ for j = 1, . . . ,m, Qit := [q1
it, q

2
it, . . . , q

si
it ]
′ for

i = 1, . . . , k, Ft := [X̄ ′
1t, . . . , X̄

′
mt, Q

′
1t, . . . , Q

′
kt]
′ and F := [F ′

1, . . . , F
′
T ]′. Using this notation the

augmented polynomial regression including higher order polynomial powers of the regressors xjt

and polynomial powers of additional integrated regressors qit can be written as

y = Zθ + FθF + φ, (10)

with φ := [φ1, . . . , φT ]′. If equation (10) is well specified the parameters can be estimated consis-

tently by FM-OLS according to Proposition 2 if the additional regressors qit fulfill the necessary

assumptions stated in Section 2.1 which are now modified to accommodate additional regressors.

Assumption 3 When considering additional regressors qit and their polynomial powers define

ṽt := [v′t, (v∗t )′]′ = [∆x′t,∆q′t]′, with v∗t = ∆qt and qt = [q1t, . . . , qkt]′. Assumptions 1 and 2 are

extended such that they are fulfilled for the extended process ṽt generated by Cṽ(L)ε̃t, with Cṽ(L)

and ε̃t also extended accordingly.

Note that equation (10) can be well-specified for different reasons. The first is that (1) is a

cointegrating relationship, in which case consistently estimated coefficients θ̂+
F will converge to

their true value equal to 0. The second possibility is that (1) is misspecified, but the extended

equation (10) is well-specified. In this case at least some entries of θ̂+
F will converge to their non-

zero true values. In case that (10) and consequently also (1) are misspecified and φt is not stationary,

spurious regression results similar to the linear case that lead to non-zero limit coefficients apply.

Consequently, a specification test based on H0 : θF = 0 is consistent against the three discussed

forms of misspecification of (1) discussed in the beginning of the sub-section.

Testing the restriction θF = 0 in (10) can be done in several ways. One is given by FM-

OLS estimation of the augmented regression (10) and performing a Wald test on the estimated

coefficients using Proposition 3. Another possibility is to use the FM-OLS residuals of the original

equation (2) and to perform a Lagrange Multiplier RESET type test in an auxiliary regression.

These two possibilities are discussed in turn.
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Proposition 4 Let yt be generated by (1) with the regressors Zt, Qt and errors ut satisfying

Assumptions 1, 2 and 3. Denote with θ̂+
F the FM-OLS estimator of θF in equation (10), with

F̃N := F −ZN (Z ′NZN )−1Z ′NF , and as above ZN = [D X] and let ω̂u.ṽ be a consistent estimator of

ωu.ṽ. Then it holds that the Wald test statistic for the null hypothesis H0 : θF = 0 in equation (10),

given by

TW :=

(
θ̂+
F

)′ (
F̃ ′

N F̃N

)
θ̂+
F

ω̂u.ṽ
, (11)

is under the null hypothesis asymptotically distributed as χ2
b , with b :=

∑m
j=1 rj +

∑n
j=1 sj.

Note that the required variance and covariance estimates in Proposition 4 are all based on the

(m + k)-dimensional process ṽt. The result given in Proposition 4 follows straightforwardly from

Propositions 2 and 3.

The basis of the Lagrange Multiplier (LM) test are the FM-OLS residuals û+
t of (2), which are

regressed on F̃ := F − Z (Z ′Z)−1 Z ′F in the auxiliary regression

û+ = F̃ θF̃ + ψt, (12)

with û+ = [û+
1 , . . . , û+

T ]′. Clearly, to allow for asymptotic standard inference the coefficients θF̃

have to be estimated by FM-OLS to achieve a second order bias free limiting distribution, since

the limiting distribution of the OLS estimator of θF̃ in (12) also depends upon second order bias

terms (see the proof of Proposition 5 in Appendix A for details). The FM-OLS estimator as well

as the test statistic for testing the hypothesis θF̃ = 0 are presented in the following proposition for

the case that (1) is well specified. Consistency of the tests against the above-discussed forms of

misspecification of (1) follows from the same arguments as for the Wald test.

Proposition 5 Let yt be generated by (1) with the regressors Zt, Qt and errors ut satisfying As-

sumptions 1, 2 and 3. Define the fully modified OLS estimator of θF̃ in equation (12) as

θ̂+
F̃

:=
(
F̃ ′F̃

)−1 (
F̃ ′û+ −OF∗ −MF∗ + kF∗M∗

)
, (13)

with

OF∗ := Ω̂uṽΩ̂−1
ṽṽ

∑
Ftṽt − Ω̂uvΩ̂−1

vv

∑
Ftvt
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and MF∗ := [M ′
X̄1

, . . . , M ′
X̄m

,M ′
Q1

, . . . , M ′
Qk

]′, where

MX̄j
= Λ̂+

vju




(pj + 1)
∑

x
pj

jt
...

(pj + rj)
∑

x
pj+rj−1
jt


 , MQi = Λ̂+

v∗i u




T
2

∑
qit

...
si

∑
qsi−1
it


 ,

kF∗ = F ′X̃(X̃ ′X̃)−1, X̃ = X −D (D′D)−1 D′X, Λ̂+
vju as defined above Proposition 2 and Λ̂+

v∗i u :=

Λ̂v∗i u− Ω̂uvΩ̂−1
vv Λ̂vv∗i . Let ω̂u,ṽ denote a consistent estimator of ωu,ṽ. Then it holds that the LM test

statistic for the null hypothesis H0 : θF̃ = 0 in (12)

TLM :=

(
θ̂+
F̃

)′ (
F̃ ′F̃

)
θ̂+
F̃

ω̂u.ṽ
, (14)

is under the null hypothesis asymptotically distributed as χ2
b , with b =

∑m
j=1 rj +

∑k
j=1 sj.

Remark 3 Proposition 5 is as a generalization of the modified RESET test considered in Hong

and Phillips (2008, Theorem 3), who consider a related test in a bivariate linear cointegrating

relationship with only one I(1) regressor and without deterministic and stationary variables, i.e.

they consider the case q = 0, n = 0, m = 1 and p = 1. A second difference to our result is that

Hong and Phillips use the OLS residuals ût of the linear cointegrating relationship in the auxiliary

regression, which leads to different bias correction terms than ours based on the FM-OLS residuals

û+
t .

Remark 4 In the misspecification analysis as discussed here we do not consider deterministic and

stationary regressors in F . With obvious modifications of the test statistics completely analogously

also higher order deterministic components can be used in F . If one considers only higher order

deterministic terms in F one arrives at tests similar to those of Park and Choi (1988) and Park

(1990). These authors propose cointegration tests based on adding superfluous higher order deter-

ministic trend terms. This approach is nested within ours. With respect to the stationary regressors

the issue is different, since omission of stationary regressors with mean zero in (1) does not change

that the corresponding error term is still stationary with mean zero and thus does not invalidate

the presence of cointegration in (1).

Remark 5 Note also that any selection of higher order polynomial terms can be chosen as addi-

tional regressors and one need not choose, as done for simplicity, a set of consecutive powers ranging

from e.g. pj + 1 to pj + rj. Again both propositions continue to hold with obvious modifications.
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2.5 KPSS Type Tests for Cointegration

In this section we discuss a residual based ‘direct’ test for nonlinear cointegration which prevails

in (1) if the error process {ut}t∈Z is stationary. To test this null hypothesis directly we present

a Kwiatkowski, Phillips, Schmidt, and Shin (1992), in short KPSS, type test statistic based on

the FM-OLS residuals û+
t of (1). The KPSS test is a variance-ratio test, comparing estimated

short- and long-run variances, that converges toward a well defined distribution under stationarity

but diverges under the unit root alternative. Note that this as well as other related tests can be

interpreted to a certain extent as specification test as well, since integrated errors also prevail if

e.g. relevant I(1) regressors are omitted in (1). The test statistic is given by

CT :=
1

T ω̂u.v

T∑

t=1


 1√

T

t∑

j=1

û+
j




2

, (15)

with ω̂u.v a consistent estimator of the long-run variance ωu.v of û+
t . The asymptotic distribution

of this test statistic is considered in the following proposition.

Proposition 6 Let yt be generated by (1) with the regressors Zt and errors ut satisfying Assump-

tions 1 and 2 and let ω̂u.v be a consistent estimator of ωu.v, then the asymptotic distribution of the

statistic (15) defined above is

CT ⇒ 1
ωu.v

∫
(B∗

u.v)
2,

with

B∗
u.v(r) := Bu.v(r)−

∫ r

0
D′

[∫
D̃D̃′

]−1 ∫
D̃dBu.v −

∫ r

0
B′

v

[∫
B̃vB̃′

v

]−1 ∫
B̃vdBu.v. (16)

The above limiting distribution (16) depends upon the specification of the deterministic com-

ponent, the number and the polynomial degrees of the integrated regressors as well as upon the

correlation structure between {ut}t∈Z and {vt}t∈Z. Albeit critical values can be simulated for any

given constellation, basing tests upon the result in Proposition 6 appears to be impractical.

Like Choi and Saikkonen (2005), who consider a similar testing problem in a dynamic OLS

estimation framework, we therefore propose to use a sub-sample based test statistic whose limiting

distribution is free of nuisance parameters.
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Proposition 7 Under the same assumptions as in Proposition 6 it holds that

CTb,i :=
1

bω̂u.v

i+b−1∑

t=i




t∑

j=i

1√
b
û+

j




2

⇒
∫

W 2,

with b such that for T →∞ it holds that b →∞ and
√

b/T → 0.

Note that for a given block size b there are M := bT/bc sub-sample based test statistics,

{CTb,i1 , . . . , CTb,iM }, that all lead to asymptotically valid statistics for the same null hypothe-

sis. Basing a test on all these statistics might lead to reduced power and increased size (compare

again Choi and Saikkonen, 2005). Therefore we consider using this set of statistics in combination

with the Bonferroni inequality to modify the critical values using

lim
T→∞

P
(
CTmax ≤ cα/M

) ≥ 1− α,

where CTmax := max(CTb,i1 , . . . , CTb,iM ), suppressing the dependence of CTmax on b for notational

brevity, and cα/M denotes the α/M -percent critical value of the distribution of
∫

W 2. For the

computation of the critical values from the distribution function, F say, of
∫

W 2 Choi and Saikkonen

(2005) obtain the interesting result that

F (z) =
√

2
∞∑

n=0

Γ(n + 1/2)
n!Γ(1/2)

(−1)n

(
1− f

(
g

2
√

z

))
, z ≥ 0, (17)

with f(x) = 2√
π

∫ x
0 exp(−y2)dy and g =

√
2/2 + 2n

√
2. Using this series representation and

truncating the series at n = 30 we obtain the critical values for the required distribution used

in the simulations and the empirical study. We present critical values based on n = 30 and for

comparison also for n = 10 (as used in Choi and Saikkonen, 2005) in Table 1. We refer to the

standard Bonferroni bound test procedure, where the null hypothesis is rejected if CTmax ≥ cα/M ,

as Choi and Saikkonen (2005) test.

By construction a test based on the Bonferroni bound is conservative and is known to be par-

ticularly conservative when the test statistics used are highly correlated (see Hommel, 1986). In

the literature several less conservative modified Bonferroni bound type test procedures have been

presented. Some of them are developed in Hommel (1988), Simes (1986) and Rom (1990). Denote

the test statistics ordered in magnitude by CT
(1)
b ≥ · · · ≥ CT

(M)
b . The modification of Hommel

(1988) amounts to rejecting the null hypothesis if at least one of the test statistics CT
(j)
b ≥ cαH(j)

with αH(j) = j
CM

α
M and CM = 1 + 1/2 + · · · + 1/M . The modification of Simes (1986) is very
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Table 1: Critical values c α
M

from P
[∫

W 2 ≥ c α
M

]
= α

M for α = 5% and 10%

M 5% 10% M 5% 10% M 5% 10%
Sum in (17) truncated at 30

2 2.135 1.656 15 3.588 3.076 28 4.034 3.538
3 2.421 1.934 16 3.635 3.121 29 4.058 3.563
4 2.627 2.135 17 3.680 3.164 30 4.081 3.588
5 2.787 2.292 18 3.721 3.203 31 4.103 3.612
6 2.917 2.421 19 3.760 3.241 32 4.124 3.635
7 3.027 2.531 20 3.797 3.276 33 4.145 3.658
8 3.121 2.627 21 3.832 3.309 34 4.165 3.680
9 3.203 2.711 22 3.865 3.340 35 4.184 3.700
10 3.276 2.787 23 3.897 3.370 36 4.202 3.721
11 3.340 2.855 24 3.927 3.398 37 4.220 3.741
12 3.398 2.917 25 3.955 3.424 38 4.237 3.760
13 3.484 2.974 26 3.983 3.484 39 4.253 3.779
14 3.538 3.027 27 4.009 3.511 40 4.269 3.797

Sum in (17) truncated at 10
2 2.135 1.656 15 3.582 3.081 28 3.997 3.533
3 2.421 1.934 16 3.627 3.128 29 4.018 3.558
4 2.626 2.135 17 3.669 3.172 30 4.038 3.582
5 2.785 2.292 18 3.709 3.214 31 4.058 3.605
6 2.912 2.421 19 3.746 3.253 32 4.076 3.627
7 3.031 2.531 20 3.781 3.291 33 4.094 3.649
8 3.128 2.626 21 3.813 3.326 34 4.111 3.669
9 3.214 2.710 22 3.844 3.360 35 4.127 3.689
10 3.291 2.785 23 3.873 3.392 36 4.143 3.709
11 3.360 2.852 24 3.900 3.422 37 4.158 3.728
12 3.422 2.912 25 3.926 3.452 38 4.172 3.746
13 3.480 2.977 26 3.951 3.480 39 4.186 3.763
14 3.533 3.031 27 3.974 3.507 40 4.199 3.781
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similar and almost coincides with the procedure of Hommel with the only difference being that the

additional adjustment factor CM is not included, i.e. αS(j) = j α
M . A further modification of the

computation of the levels used in the sequential test procedure has been proposed in Rom (1990).

For this modification the levels αR(j) are computed recursively via αR(M) = α, αR(M − 1) = α
2

and for k = 3, . . . ,M they are computed as

αR(M − k + 1) =
1
k




k−1∑

j=1

αj −
k−1∑

j=1

(
k

j

)
(αR(M − j))k−j


 .

The null hypothesis is rejected if all test statistics CT
(j)
b ≥ cαR(j).

Another important practical problem when using the sub-sample based test is the choice of the

block-length b. As Choi and Saikkonen (2005) we apply the so called minimum volatility rule

proposed by Romano and Wolf (2001, p. 1297) in the simulations and empirical study. To be

precise, we choose bmin = 0.5
√

T and bmax = 2.5
√

T . Let us start the discussion with the Choi

and Saikkonen (2005) test. For all b ∈ [bmin, bmax] we compute the standard deviations of the test

statistics over the five neighboring block sizes, i.e. for a block size b∗, we use the test statistics

CTb,max for b = b∗ − 2, b∗ − 1, b∗, b∗ + 1, b∗ + 2 to compute the standard deviation of CTb,max as a

function of b. The optimal block-length is then given by the value bopt ∈ [bmin + 2, bmax − 2] that

leads to the smallest standard deviation. For the modified tests that involve all M test statistics we

base the block-length selection on the following procedure. For each block-length bi ∈ [bmin, bmax]

we compute the mean and standard deviation of the empirical distribution of the test statistics

{CTbi,i1 , . . . , CTbi,iM}, which we denote by mbi and sdbi . The idea of the minimum volatility

principle is now implemented by minimizing (again over five neighboring values of b) the change of

the empirical distribution in terms of the first two moments. Hence we choose the block-length to

minimize vmbi
= std(mbi−2,mbi−1,mbi

,mbi+1,mbi+2)+std(sdbi−2, sdbi−1, sdbi
, sdbi+1, sdbi+2), with

std(·) denoting the standard deviation.

3 Simulation Performance

In this section we present some simulation results to investigate the finite sample performance of

the proposed estimators and tests. For assessing the performance of the estimators and size of the

tests we use

yt = c + δt + β1xt + β2x
2
t + ut , t = 1, . . . , T (18)
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to generate {(yt, xt)}T
t=1 for five different sample sizes T ∈ {50, 100, 200, 500, 1000} and parameter

values c = δ = 1, β1 = 5 and β2 = −0.3. ∆xt = vt and ut are generated as

(1− ρ1L)ut = e1t + ρ2e2t

vt = e2t−1 + 0.5e2t−2,

with (e1t, e2t)′ ∼ N (0, I2). The two parameters ρ1 and ρ2 control the level of serial correlation in

the error term and the level of endogeneity of the regressor, respectively, and they are set to take

four different values ρ1, ρ2 ∈ {0.2, 0.4, 0.6, 0.8}.

To construct the bias correction terms, we need consistent estimators of the required long-run

variances. The present results are based on the estimator proposed in Newey and West (1987) with

bandwidth equal to b4(T/100)1/4c.3 All simulation results are based on 5,000 replications and all

computations have been performed in MATLAB. All tests results reported in this section are for a

nominal level of α = 5%.

3.1 Performance of the Estimators

Tables 2 and 3 show the Monte Carlo means and standard deviations of the absolute values of

the biases |β̂1 − β1| and |β̂2 − β2| from (18) for the OLS and FM-OLS estimators as a function of

the sample size T and ρ1 and ρ2. The simulation results confirm the expectations concerning the

relative performance of the OLS and FM-OLS estimators. The relative performance of the FM-OLS

estimator compared to the OLS estimator improves for increasing serial correlation (i.e. increasing

ρ1) and increasing sample size. Increasing endogeneity (via increasing ρ2) implies that the sample

size required for which FM-OLS outperforms OLS is larger, e.g. for ρ2 = 0.7 and β1 the sample size

should be about 100 or larger to result in smaller biases of FM-OLS. Generally, for β1 corresponding

to the integrated regressor, FM-OLS outperforms OLS already for many constellations for the

smaller sample sizes. For the coefficient β2 corresponding to the squared integrated process the

sample size at which FM-OLS begins to outperform OLS has to be larger. Additional simulation

results available upon request show that the discussed findings are qualitatively very robust with

respect to the variance of ut.

The sensitivity of the results with respect to the sample size T reflects the fact that the compu-

tation of the FM-OLS estimator requires non-parametric estimates of long-run covariances. Conse-

3Other kernels like the Parzen kernel and other bandwidth choices have also been investigated but do not lead to
qualitatively different results.
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quently, the finite sample performance of the FM-OLS estimator is dependent upon the properties

of the long-run variance estimators, which sometimes perform poorly in small samples. However,

the removal of the second order bias terms in the distribution is of prime importance for performing

valid inference and the (potentially only small) modification to the point estimates is therefore not

the only relevant aspect.

3.2 Performance of the Augmented and Auxiliary Regression Tests

In the discussion of the specification tests we consider here only the LM test and merely note that

very similar results are also obtained with the Wald test. We compare two test versions to assess

the importance of bias correction via FM-OLS estimation. One test statistic corresponds to the

result given in Proposition 5 based on appropriate FM-OLS estimation of û+
t on Ft. A second test

statistic is computed by simply performing an OLS regression of û+
t on Ft, with this test statistic

suffering from biases even asymptotically.

The results in Table 4 are based on the FM-OLS residuals of (18) with Ft = [x3
t , x

4
t , qt]′ where qt

is generated as follows. First, a random walk q̃t =
∑t

j=1 εt with εt ∼ N (0, 1) and εt independent

of e1t and e2t is generated. Then, this variable is orthogonalized with respect both yt and all

four regressors in (18) by taking the OLS residuals of the regression of q̃t on all these variables.

These residuals are denoted qt. In a variety of preliminary experiments this orthogonalization has

improved the finite sample performance of the tests.

Bias correction has huge and important effects for the performance of the LM test, as can be

seen in Table 4. The test based on OLS estimation of the auxiliary regression leads to rejections

almost throughout, whereas the LM test based on FM-OLS estimation of the auxiliary regression

shows very good performance already for the smallest sample size.

The large effect of bias correction on the LM test statistic is graphically displayed in Figure 1,

where we show kernel density estimates of the test statistics based on the 5,000 replications for the

intermediate sample size T = 500. The kernel densities are based on using the Gaussian kernel with

bandwidth chosen according to Silverman’s rule of thumb. The left graphs display the OLS based

statistics and the right graphs display the FM-OLS based statistics. Noting the scales for the left

graphs makes clear why the OLS based statistics lead to rejections of the null hypotheses almost

throughout. The FM-OLS based tests’ densities in the right graphs remains remarkably unaffected

by both serial correlation (upper panel) and endogeneity (lower panel).
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Table 2: Mean and standard deviation of |β̂1 − β1|

OLS FM-OLS

ρ1 = 0.2 ρ1 = 0.4 ρ1 = 0.6 ρ1 = 0.8 ρ1 = 0.2 ρ1 = 0.4 ρ1 = 0.6 ρ1 = 0.8

ρ2 = 0.2

T= 50 0.119 0.167 0.330 1.045 0.162 0.207 0.369 1.165

(0.112) (0.153) (0.288) (0.904) (0.181) (0.209) (0.331) (0.990)

T= 100 0.057 0.085 0.185 0.717 0.070 0.098 0.198 0.757

(0.053) (0.079) (0.169) (0.629) (0.075) (0.096) (0.182) (0.663)

T= 200 0.028 0.044 0.103 0.444 0.032 0.048 0.106 0.457

(0.027) (0.041) (0.093) (0.386) (0.032) (0.045) (0.096) (0.395)

T= 500 0.011 0.018 0.044 0.207 0.012 0.019 0.044 0.207

(0.010) (0.017) (0.040) (0.180) (0.012) (0.017) (0.040) (0.181)

T=1000 0.006 0.009 0.023 0.111 0.006 0.009 0.022 0.109

(0.005) (0.008) (0.020) (0.098) (0.005) (0.008) (0.020) (0.097)

ρ2 = 0.4

T= 50 0.127 0.168 0.334 1.128 0.164 0.206 0.368 1.225

(0.116) (0.154) (0.292) (0.909) (0.179) (0.206) (0.329) (0.995)

T= 100 0.061 0.086 0.191 0.785 0.072 0.098 0.199 0.803

(0.057) (0.080) (0.167) (0.634) (0.080) (0.098) (0.177) (0.658)

T= 200 0.031 0.045 0.106 0.492 0.032 0.047 0.106 0.485

(0.028) (0.041) (0.096) (0.409) (0.032) (0.045) (0.096) (0.408)

T= 500 0.012 0.018 0.046 0.237 0.012 0.019 0.045 0.225

(0.011) (0.018) (0.044) (0.208) (0.012) (0.018) (0.043) (0.202)

T=1000 0.006 0.009 0.023 0.125 0.006 0.009 0.022 0.115

(0.005) (0.008) (0.021) (0.109) (0.005) (0.008) (0.021) (0.104)

ρ2 = 0.6

T= 50 0.140 0.171 0.345 1.281 0.175 0.214 0.376 1.353

(0.127) (0.156) (0.295) (0.995) (0.200) (0.226) (0.344) (1.071)

T= 100 0.070 0.090 0.202 0.893 0.075 0.101 0.203 0.881

(0.063) (0.082) (0.175) (0.682) (0.079) (0.097) (0.180) (0.704)

T= 200 0.035 0.047 0.115 0.568 0.033 0.048 0.110 0.535

(0.031) (0.043) (0.101) (0.449) (0.033) (0.046) (0.098) (0.439)

T= 500 0.014 0.019 0.049 0.275 0.012 0.019 0.045 0.244

(0.012) (0.017) (0.043) (0.221) (0.011) (0.017) (0.041) (0.206)

T=1000 0.007 0.009 0.025 0.143 0.006 0.009 0.022 0.122

(0.006) (0.008) (0.022) (0.120) (0.005) (0.008) (0.020) (0.108)

ρ2 = 0.8

T= 50 0.158 0.180 0.373 1.481 0.177 0.211 0.389 1.528

(0.135) (0.163) (0.311) (1.063) (0.188) (0.213) (0.338) (1.145)

T= 100 0.077 0.092 0.224 1.067 0.077 0.101 0.213 1.026

(0.065) (0.083) (0.187) (0.758) (0.080) (0.098) (0.186) (0.767)

T= 200 0.039 0.047 0.122 0.669 0.034 0.048 0.111 0.602

(0.034) (0.043) (0.103) (0.492) (0.034) (0.046) (0.097) (0.472)

T= 500 0.016 0.019 0.054 0.323 0.012 0.019 0.046 0.271

(0.014) (0.018) (0.047) (0.250) (0.012) (0.018) (0.042) (0.225)

T=1000 0.008 0.010 0.027 0.170 0.006 0.009 0.023 0.138

(0.007) (0.009) (0.024) (0.135) (0.006) (0.009) (0.021) (0.116)
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Table 3: Mean and standard deviation of |β̂2 − β2|

OLS FM-OLS

ρ1 = 0.2 ρ1 = 0.4 ρ1 = 0.6 ρ1 = 0.8 ρ1 = 0.2 ρ1 = 0.4 ρ1 = 0.6 ρ1 = 0.8

ρ2 = 0.2

T= 50 0.020 0.027 0.050 0.143 0.024 0.031 0.053 0.146

(0.019) (0.025) (0.046) (0.132) (0.025) (0.030) (0.049) (0.136)

T= 100 0.007 0.010 0.021 0.077 0.008 0.011 0.022 0.078

(0.007) (0.010) (0.020) (0.070) (0.008) (0.011) (0.021) (0.071)

T= 200 0.002 0.004 0.009 0.035 0.003 0.004 0.009 0.036

(0.002) (0.004) (0.008) (0.033) (0.003) (0.004) (0.008) (0.033)

T= 500 0.001 0.001 0.002 0.011 0.001 0.001 0.002 0.011

(0.001) (0.001) (0.002) (0.010) (0.001) (0.001) (0.002) (0.010)

T=1000 0.000 0.000 0.001 0.004 0.000 0.000 0.001 0.004

(0.000) (0.000) (0.001) (0.004) (0.000) (0.000) (0.001) (0.004)

ρ2 = 0.4

T= 50 0.020 0.028 0.052 0.149 0.025 0.032 0.054 0.152

(0.020) (0.026) (0.048) (0.139) (0.026) (0.032) (0.051) (0.142)

T= 100 0.007 0.010 0.021 0.077 0.008 0.011 0.021 0.077

(0.007) (0.010) (0.020) (0.069) (0.008) (0.011) (0.020) (0.069)

T= 200 0.002 0.004 0.009 0.036 0.003 0.004 0.009 0.036

(0.002) (0.004) (0.008) (0.033) (0.003) (0.004) (0.008) (0.033)

T= 500 0.001 0.001 0.002 0.011 0.001 0.001 0.002 0.011

(0.001) (0.001) (0.002) (0.011) (0.001) (0.001) (0.002) (0.011)

T=1000 0.000 0.000 0.001 0.004 0.000 0.000 0.001 0.004

(0.000) (0.000) (0.001) (0.004) (0.000) (0.000) (0.001) (0.004)

ρ2 = 0.6

T= 50 0.021 0.027 0.051 0.155 0.026 0.032 0.055 0.159

(0.021) (0.026) (0.047) (0.139) (0.029) (0.034) (0.052) (0.144)

T= 100 0.007 0.010 0.022 0.079 0.008 0.011 0.022 0.080

(0.007) (0.010) (0.020) (0.071) (0.008) (0.011) (0.021) (0.071)

T= 200 0.003 0.004 0.009 0.037 0.003 0.004 0.009 0.037

(0.002) (0.004) (0.008) (0.033) (0.003) (0.004) (0.008) (0.033)

T= 500 0.001 0.001 0.002 0.011 0.001 0.001 0.002 0.011

(0.001) (0.001) (0.002) (0.010) (0.001) (0.001) (0.002) (0.010)

T=1000 0.000 0.000 0.001 0.004 0.000 0.000 0.001 0.004

(0.000) (0.000) (0.001) (0.004) (0.000) (0.000) (0.001) (0.004)

ρ2 = 0.8

T= 50 0.022 0.028 0.053 0.155 0.027 0.033 0.056 0.158

(0.021) (0.026) (0.048) (0.144) (0.028) (0.032) (0.052) (0.147)

T= 100 0.007 0.010 0.022 0.081 0.008 0.011 0.022 0.081

(0.007) (0.010) (0.021) (0.073) (0.009) (0.011) (0.021) (0.073)

T= 200 0.003 0.004 0.009 0.038 0.003 0.004 0.009 0.038

(0.003) (0.004) (0.008) (0.035) (0.003) (0.004) (0.009) (0.034)

T= 500 0.001 0.001 0.003 0.012 0.001 0.001 0.002 0.012

(0.001) (0.001) (0.002) (0.011) (0.001) (0.001) (0.002) (0.011)

T=1000 0.000 0.000 0.001 0.005 0.000 0.000 0.001 0.004

(0.000) (0.000) (0.001) (0.005) (0.000) (0.000) (0.001) (0.004)
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Table 4: Empirical Rejection Probabilities of the LM Test when H0 is True

Based on OLS Based on FM-OLS
ρ1 = 0.2 ρ1 = 0.4 ρ1 = 0.6 ρ1 = 0.8 ρ1 = 0.2 ρ1 = 0.4 ρ1 = 0.6 ρ1 = 0.8

ρ2 = 0.2
T = 50 0.962 0.960 0.966 0.971 0.058 0.037 0.025 0.023

100 0.972 0.971 0.965 0.961 0.034 0.026 0.020 0.028
200 0.981 0.981 0.979 0.975 0.032 0.030 0.029 0.045
500 0.992 0.996 0.993 0.992 0.034 0.036 0.047 0.083

1000 0.998 0.998 0.999 0.996 0.030 0.034 0.047 0.089
ρ2 = 0.4

T = 50 0.972 0.978 0.970 0.965 0.073 0.045 0.020 0.011
100 0.987 0.985 0.981 0.970 0.060 0.036 0.033 0.030
200 0.997 0.994 0.992 0.978 0.056 0.037 0.029 0.039
500 1.000 0.999 0.998 0.994 0.059 0.043 0.037 0.079

1000 1.000 0.999 1.000 0.999 0.066 0.041 0.043 0.084
ρ2 = 0.6

T = 50 0.994 0.993 0.980 0.967 0.113 0.065 0.031 0.022
100 0.999 0.995 0.987 0.975 0.104 0.061 0.033 0.033
200 0.999 0.998 0.992 0.988 0.111 0.071 0.036 0.047
500 1.000 1.000 0.998 0.997 0.115 0.064 0.036 0.087

1000 1.000 1.000 1.000 0.999 0.114 0.058 0.036 0.086
ρ2 = 0.8

T = 50 0.998 0.995 0.990 0.970 0.158 0.091 0.037 0.022
100 0.999 0.999 0.991 0.984 0.152 0.100 0.036 0.030
200 1.000 1.000 0.997 0.994 0.155 0.084 0.037 0.044
500 1.000 0.999 1.000 0.998 0.190 0.098 0.048 0.079

1000 1.000 1.000 0.999 1.000 0.195 0.092 0.036 0.086
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Figure 1: The Effects of Bias Correction on the Density of the LM Statistic
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For studying the power performance of the LM test, i.e. the empirical rejection probabilities for

DGPs different from the estimated equation, we consider three alternative DGPs given by

(A) : yt = 1 + t− 15xt + 5x2
t − 0.5x3

t + ut

(B) : yt = 1 + t + 5xt − 0.3x2
t + et , where et is an I(1) variable independent of xt

(C) : yt and xt are two independent I(1) variables

To be precise in case (B) we use et =
∑t

j=1 εt with εt ∼ N (0, 4) and in case (C) yt is generated

as yt =
∑t

j=1 εt with εt ∼ N (0, 1). The regressor xt and for (A) ut are throughout generated as

described above. The three DGPs exemplify the main alternatives of interest. Alternative specifica-

tion (A) covers the case of missing higher polynomial powers of the integrated regressor, alternative

(B) corresponds to the case of a missing integrated regressor and alternative (C) corresponds to a

spurious regression. The estimated equation is for all DGPs given by (18) and for alternative (A)

again all combinations of ρ1 and ρ2 are considered.

The results in case of alternative (A) are displayed in Table 5 and for alternatives (B) and (C)

the results are shown in Table 6. The results in Table 5 show that power is close to 1 or equal to 1

in case of missing higher polynomial powers for already the smallest considered sample size T = 50.

This finding is robust with respect to the amount of serial correlation and endogeneity. However,

power is much lower in case of alternatives (B) and (C). Alternatives (B) and (C) are not as well

captured by the regressors Ft as in case of alternative (A), in which case the inclusion of Ft leads

to a well-specified augmented regression. These results emphasize that the performance of the LM

test depends, as in the stationary case, upon the relationship between the true but (in applications)

unknown alternative and the auxiliary regressors collected in Ft. For empirical applications this

means that one might consider to perform the LM test with several sets of auxiliary regressors,

ignoring as is usual in empirical work all problems related to performing multiple inference.

3.3 Performance of the KPSS Type Tests

We now briefly consider the performance of three sub-sample KPSS type tests, the modified Bonfer-

roni procedures as proposed by Simes (1986) and Rom (1990) as well as the non-modified procedure

used in Choi and Saikkonen (2005). Let us start with considering the behavior under the null hy-

pothesis, reported in Table 7. A key observation is that the three versions of the sub-sample KPSS

test perform very similarly under the null hypothesis. This implies that the modifications are not
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Table 5: Empirical Rejection Probabilities of the LM Test for Alternative (A)

ρ1 = 0.2 ρ1 = 0.4 ρ1 = 0.6 ρ2 = 0.8
ρ2 = 0.2

T=50 0.999 0.999 0.998 0.957
100 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000
ρ2 = 0.4

T=50 1.000 1.000 0.999 0.954
100 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000
ρ2 = 0.6

T=50 1.000 1.000 0.998 0.956
100 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000
ρ2 = 0.8

T=50 1.000 1.000 0.999 0.950
100 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000

effective enough to completely offset the conservative behavior of the original Bonferroni proce-

dure. The performance might be considered as not very good, but it has to be noted that the tests

are performed on sub-samples that can be quite short, which of course leads to a deterioration of

finite sample performance. In particular this effect is observed also in the power experiments as

illustrated in Tables 8 and 9. For all three considered alternatives the rejection probabilities are

about 0.35 to 0.4 for T = 500 and around 0.75 for T = 1000. Note that the rejection probabilities

are higher for the KPSS type tests than for the LM test for alternatives (B) and (C), which again

reflects, from a comparative perspective, the dependence of the LM tests’ performance upon the

additional regressors Ft.
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Table 6: Empirical Rejection Probabilities of the LM Test for Alternatives (B) and (C)

(B) (C)
T=50 0.018 0.020

100 0.031 0.031
200 0.075 0.071
500 0.168 0.169

1000 0.286 0.285

4 Environmental Kuznets Curves

As mentioned in the introduction, since the work of Grossmann and Krueger (1993, 1995) there has

been a large body of both empirical and theoretical work studying the relationship between income

and pollution or emissions measures. Brock and Taylor (2005) is an excellent recent discussion of

EKCs which identifies three different mechanisms that link economic activity with pollution and

emissions. These are the scale, composition and technique effects. For unchanging composition

of output and unchanging technology emissions rise alongside with the scale of economic activity.

For given scale and technique, emissions can rise or fall when the composition of output changes

toward a more or less emissions intensive composition. Finally, emissions per unit of output, i.e.

emissions intensity, can decrease by improvements in technology, e.g. via improved abatement

technologies. Depending upon the relative importance of the three effects a monotonous, a U-

shaped, an inverted U-shaped or in fact any pattern between per capita GDP and per capita

emissions may emerge. Disentangling the relative importance of the three effects requires detailed

structural modeling. However, the empirical EKC literature is typically less ambitious and focuses

on reduced form modeling to address the issue whether the three mechanisms described jointly

operate in a combination that leads to the emergence of an inverted U-shaped relationship.

Typically, the following quadratic formulation in logarithms including a linear time trend is

considered

et = c + δt + β1yt + β2y
2
t + ut, (19)

with et denoting the logarithm of per capita emissions and yt the logarithm of per capita GDP.4

A linear time trend is often included to allow e.g. for exogenous technical progress in abatement

4The popular quadratic formulation appears to be due to Holtz-Eakin and Selden (1995), whereas Grossmann and
Krueger (1995) use a cubic formulation, which we also investigate below.
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Table 7: Empirical Rejection Probabilities of KPSS Type Tests when H0 is True

ρ1 = 0.2 ρ1 = 0.4 ρ1 = 0.6 ρ1 = 0.8
Tests: (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

ρ2 = 0.2
T=50 0.061 0.057 0.071 0.032 0.030 0.039 0.012 0.011 0.018 0.017 0.016 0.033

100 0.030 0.030 0.029 0.019 0.019 0.021 0.040 0.040 0.042 0.138 0.135 0.149
200 0.010 0.010 0.010 0.013 0.013 0.012 0.041 0.039 0.045 0.191 0.183 0.197
500 0.007 0.007 0.008 0.015 0.015 0.019 0.058 0.057 0.058 0.304 0.295 0.297

1000 0.010 0.011 0.011 0.020 0.020 0.019 0.065 0.063 0.056 0.326 0.309 0.322
ρ2 = 0.4

T=50 0.057 0.055 0.064 0.030 0.028 0.034 0.012 0.011 0.017 0.015 0.014 0.030
100 0.024 0.024 0.025 0.017 0.017 0.019 0.042 0.042 0.042 0.148 0.144 0.155
200 0.008 0.008 0.011 0.015 0.015 0.017 0.044 0.044 0.049 0.201 0.196 0.213
500 0.006 0.006 0.008 0.016 0.016 0.018 0.064 0.062 0.065 0.292 0.283 0.294

1000 0.008 0.008 0.009 0.017 0.017 0.019 0.066 0.065 0.062 0.335 0.319 0.319
ρ2 = 0.6

T=50 0.046 0.044 0.057 0.027 0.025 0.030 0.011 0.010 0.016 0.012 0.010 0.028
100 0.019 0.018 0.022 0.016 0.016 0.016 0.038 0.036 0.041 0.143 0.140 0.148
200 0.005 0.005 0.008 0.011 0.010 0.014 0.042 0.041 0.042 0.199 0.191 0.209
500 0.004 0.004 0.005 0.014 0.014 0.014 0.058 0.057 0.058 0.298 0.287 0.294

1000 0.007 0.007 0.008 0.019 0.018 0.018 0.059 0.059 0.064 0.329 0.313 0.310
ρ2 = 0.8

T=50 0.038 0.035 0.043 0.023 0.021 0.028 0.011 0.010 0.019 0.015 0.013 0.032
100 0.016 0.016 0.016 0.014 0.013 0.015 0.039 0.039 0.042 0.153 0.148 0.152
200 0.003 0.003 0.005 0.011 0.011 0.011 0.038 0.037 0.041 0.198 0.191 0.210
500 0.005 0.005 0.004 0.014 0.014 0.015 0.052 0.052 0.057 0.289 0.275 0.268

1000 0.005 0.005 0.005 0.016 0.017 0.017 0.059 0.059 0.058 0.317 0.299 0.294

[Note] The three tests are: (1) Simes (1986), (2) Rom (1990) and (3) Choi and Saikkonen (2005)
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Table 8: Empirical Rejection Probabilities of KPSS Type Tests for Alternative (A)

ρ1 = 0.2 ρ1 = 0.4 ρ1 = 0.6 ρ1 = 0.8
Tests: (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

ρ2 = 0.2
T=50 0.009 0.009 0.010 0.009 0.009 0.010 0.008 0.007 0.011 0.009 0.008 0.013

100 0.002 0.002 0.003 0.002 0.002 0.002 0.003 0.002 0.003 0.007 0.007 0.010
200 0.023 0.022 0.023 0.023 0.021 0.023 0.023 0.022 0.023 0.026 0.024 0.024
500 0.380 0.363 0.368 0.380 0.363 0.368 0.382 0.364 0.368 0.380 0.363 0.366

1000 0.762 0.739 0.733 0.762 0.738 0.734 0.763 0.738 0.734 0.764 0.740 0.734
ρ2 = 0.4

T=50 0.009 0.008 0.010 0.008 0.008 0.011 0.009 0.009 0.011 0.006 0.005 0.011
100 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.008 0.008 0.010
200 0.026 0.024 0.028 0.026 0.024 0.028 0.026 0.025 0.027 0.025 0.023 0.027
500 0.368 0.352 0.354 0.367 0.351 0.354 0.368 0.352 0.355 0.370 0.354 0.361

1000 0.764 0.741 0.735 0.764 0.741 0.735 0.763 0.742 0.735 0.764 0.742 0.735
ρ2 = 0.6

T=50 0.009 0.009 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.008 0.007 0.012
100 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.003 0.003 0.005
200 0.024 0.023 0.025 0.024 0.023 0.025 0.025 0.025 0.025 0.027 0.027 0.030
500 0.367 0.351 0.351 0.367 0.351 0.351 0.367 0.351 0.351 0.369 0.354 0.353

1000 0.754 0.733 0.729 0.754 0.733 0.729 0.754 0.733 0.729 0.754 0.732 0.730
ρ2 = 0.8

T=50 0.009 0.009 0.010 0.010 0.009 0.011 0.009 0.009 0.009 0.008 0.008 0.014
100 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.002 0.004 0.008 0.008 0.010
200 0.027 0.026 0.031 0.027 0.026 0.031 0.026 0.025 0.030 0.027 0.026 0.032
500 0.372 0.357 0.354 0.372 0.357 0.354 0.371 0.357 0.354 0.374 0.358 0.359

1000 0.758 0.734 0.730 0.758 0.734 0.730 0.757 0.734 0.729 0.756 0.734 0.729

[Note] The three tests are: (1) Simes (1986), (2) Rom (1990) and (3) Choi and Saikkonen (2005)

Table 9: Empirical Rejection Probabilities of KPSS Type Tests for Alternatives (B) and (C)

(B) (C)
Tests: (1) (2) (3) (1) (2) (3)

T=50 0.009 0.009 0.011 0.006 0.005 0.011
100 0.003 0.003 0.004 0.008 0.008 0.010
200 0.026 0.025 0.027 0.025 0.023 0.027
500 0.368 0.352 0.355 0.370 0.354 0.361

1000 0.763 0.742 0.735 0.764 0.742 0.735

[Note] The three tests are: (1) Simes (1986), (2) Rom (1990) and (3) Choi and Saikkonen (2005)
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Table 10: List of countries included in the empirical analysis. The sample range is 1870–2000 with
the exception of New Zealand for which the sample ranges from 1878–2000 for CO2 emissions.

Australia Austria Belgium Canada
Denmark Finland France Germany
Italy Japan Netherlands New Zealand
Norway Portugal Spain Sweden
Switzerland UK USA

technologies. Studies like Grossmann and Krueger (1993, 1995) who investigate the relationship

between pollutants and economic development with measurements taken at a disaggregated spatial

level typically include further explanatory variables. For aggregate country-wide analysis, however,

the above formulation (19) appears to be commonly used. Note that our theory allows for further

deterministic, stationary and integrated regressors (including polynomial transformations of them)

and hence can be used also for more detailed and less reduced form character modeling with

additional explanatory variables as in the work of Grossman and Krueger.

In our application we consider annual data for GDP, carbon dioxide (CO2) and sulfur dioxide

(SO2) emissions for 19 early industrialized countries listed in Table 10 over the period 1870–2000

and displayed in Appendix B in Figure 2. The GDP data are from the homepage of Angus Mad-

dison (http://www.ggdc.net/maddison), the CO2 emissions data have been downloaded from the

homepage of the Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov) and the SO2

emissions data are from Stern (2006). Note that for New Zealand the CO2 emissions data only

start in 1878.

Performing the battery of usual unit root tests on the log per capita GDP series leads to non-

rejections of the unit root null hypothesis for all countries.5 Note that the nonlinear cointegration

test results are qualitatively similar when we reduce the samples country specifically to exclude

the break points for CO2 emissions found for some countries in Lanne and Liski (2004) or in some

countries during the two world wars.6 This robustness of findings is probably driven by the fact

that in those countries that are affected by e.g. the two world wars all variables are affected in a

quite similar fashion, see the shaded areas in Figure 2 in Appendix B.

5Detailed results for the usual unit root tests and specifications including only intercepts or both intercepts and
linear trends are available upon request. The only borderline case is the US, where log per capita GDP over the
period 1870–2000 might also be considered as trend-stationary, depending upon test used.

6Note furthermore, in light of Remark 1, that we could incorporate broken deterministic trends in the analysis.
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Before turning to formal statistical analysis of the relationship we consider the correlation between

log per capita GDP on the one hand and log per capita emissions on the other in Figure 3, which

is also relegated to Appendix B. The figure shows that for many countries there appears to be a

relationship between income and both CO2 and SO2 emissions that is rising first and declining for

higher income levels. However, in many cases this relationship appears to be asymmetric, especially

for SO2 emissions. For SO2 emissions the quite rapid decline observed for many countries is at

least partly due to changing legislation rather than only due to increasing income per se. Such an

asymmetric behavior might better be captured by a third order polynomial than a second order

polynomial as postulated in (19). For CO2 emissions the relationship with income is monotonous

for several countries for the sample period. Thus, even if there were an underlying quadratic

relationship this will be hard to detect in these cases.

We present the result of the LM test and the three discussed versions of the KPSS type test

for (19) in Table 11. In the application we use for the LM test, similarly to the simulations,

Ft = [y3
t , y

4
t , qt] with qt generated and orthogonalized to the regressors as in Section 3. For our

application testing by the LM test against Ft as just described is of particular relevance since as

discussed for many countries the potential relationship appears to be asymmetric, which could be

picked up by a third order polynomial of GDP. If we focus on the LM test results the null hypothesis

is rejected for 11 (14) of the 19 countries at the 5% (10%) level for CO2 emissions and for 14 (15)

countries at the 5% (10%) level for SO2 emissions. The three versions of the KPSS tests perform,

unlike in the simulations, quite differently. The two modified versions à la Simes (1986) and Rom

(1990) perform very similarly and lead to rejections of the null hypothesis for fewer countries than

the Choi and Saikkonen (2005) version of the test. This might indicate that in the application

the modifications correct to a certain extent the conservative behavior of the Choi and Saikkonen

(2005) Bonferroni test, if the model under test is correct.

We focus on the results obtained by the LM test, which has shown good performance in case of

alternatives well captured by the auxiliary regressors, whereas power is only increasingly slowly for

the KPSS type tests. For CO2 emissions the null hypothesis of a quadratic EKC is not rejected

for Australia, Austria, Belgium, Finland, Italy, Netherlands, Spain and UK. In Figure 3 these are

all countries in which the potential quadratic relationship is still primarily in the upward part

with a tendency to flatten out at the highest income levels and with only few observations on

the (potentially present) downward part. The exception here being the UK, where the scatterplot

displays a rather wide inverted U-shape. Relatively similar observations can be made for SO2
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Table 11: Specification Test Results for the Quadratic Specification (19)

CO2 SO2

Tests: (1) (2) (3) (4) (1) (2) (3) (4)
Australia 0.074 1(1) 1(1) 0.001 0.886 1(1) 1(1) 0.000
Austria 0.804 0(1) 0(1) 0.011 0.000 0(0) 0(0) 0.019
Belgium 0.238 1(1) 1(1) 0.000 0.001 1(1) 1(1) 0.004
Canada 0.000 0(0) 0(0) 0.032 0.891 0(1) 0(1) 0.012
Denmark 0.000 0(1) 0(1) 0.009 0.000 0(0) 0(0) 0.069
Finland 0.086 0(0) 0(0) 0.115 0.175 0(0) 0(0) 0.007
France 0.030 0(1) 0(1) 0.002 0.000 0(0) 0(0) 0.298
Germany 0.005 1(1) 1(1) 0.002 0.000 0(0) 0(0) 0.028
Italy 0.344 0(0) 0(0) 0.004 0.002 0(1) 0(1) 0.009
Japan 0.000 1(1) 0(1) 0.013 0.000 1(1) 1(1) 0.001
Netherlands 0.091 1(1) 0(1) 0.001 0.000 0(0) 0(0) 0.042
New Zealand 0.030 1(1) 1(1) 0.000 0.329 0(0) 0(0) 0.002
Norway 0.004 0(0) 0(0) 0.073 0.048 0(0) 0(0) 0.051
Portugal 0.004 1(1) 1(1) 0.002 0.004 1(1) 1(1) 0.002
Spain 0.411 0(1) 0(1) 0.006 0.098 1(1) 1(1) 0.023
Sweden 0.001 0(0) 0(0) 0.031 0.001 0(0) 0(0) 0.241
Switzerland 0.000 0(1) 0(1) 0.028 0.006 0(0) 0(0) 0.266
UK 0.199 1(1) 1(1) 0.000 0.000 1(1) 1(1) 0.001
USA 0.000 0(0) 0(0) 0.031 0.014 1(1) 1(1) 0.001

[Note] Test results for four specification tests of equation (19). The four tests are given by (1) LM test (p-
value is reported), (2) Simes (1986) test where 1 indicates rejection and 0 non-rejection, (3) Rom (1990) test
where 1 indicates rejection and 0 non-rejection and (4) Choi and Saikkonen (2005) test (p-value is reported).
For tests (2) and (3) the numbers outside the brackets correspond to α = 5% and the numbers in brackets
to α = 10%.
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emissions, with non-rejections for Australia, Canada, Finland, New Zealand and Spain. For Canada

and New Zealand the scatterplots indicate clearly an inverted U-shaped relationship.7 For Australia,

Finland and Spain the majority of observations is in the upward part of the potential quadratic

relationship.

The estimation results for (19) are presented for all countries in Table 12 for CO2 emissions

and in Table 13 for SO2 emissions. For completeness we also report the OLS estimates, whose

reported standard errors have no formal statistical justification. For those countries for which the

specification is not rejected the implied turning points, all corresponding to inverted U-shaped

relationships, are with very few exceptions reasonable and within sample. The exceptions are for

CO2 emissions Italy with a turning point of almost 81,000 USD and for SO2 emissions Australia with

a turning point of the order 1032. In both cases the scatterplots show that essentially all observations

are in the upward part of the inverted U. Note also that not all coefficients corresponding to GDP

squared are significantly different from 0. This happens e.g. for Australia in the case of SO2

emissions, which is the only positive but not significant coefficient to squared GDP among the cases

where the quadratic specification is not rejected. We observe some differences in the implied turning

points between the OLS and FM-OLS estimates, where especially for CO2 emissions typically FM-

OLS estimation leads to smaller turning points. This is an important observation since part of the

empirical EKC literature has observed unreasonably large turning points, in particular in case of

CO2 emissions.

Let us finally turn to the analysis of the cubic EKC, given by

et = c + δt + β1yt + β2y
2
t + β3y

3
t + ut, (20)

where for the LM test, which we again focus on, we use Ft = [y4
t , qt] as auxiliary regressors. For

CO2 emissions the null hypothesis of correct specification is now not rejected – in addition to those

countries for which the quadratic specification has not been rejected – for New Zealand, Switzerland

and the USA. For the Netherlands the cubic specification is rejected, despite the non-rejection of

the quadratic specification. For SO2 emissions non-rejections occur in addition to those for the

quadratic specification for Belgium, the Netherlands and the USA.

The Choi and Saikkonen (2005) test again leads to rejections for most countries for both pollu-

tants. The two modified versions lead to identical test results for both pollutants for all countries

7This graphical observation also applies to Norway, where the p-value of the LM test is 0.048, i.e. the null
hypothesis is marginally rejected at the 5% level.
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Table 12: Estimation Results for CO2 Emissions for the Quadratic Specification (19)

δ̂ β̂1 β̂2 Turning Point

Country OLS FM-OLS OLS FM-OLS OLS FM-OLS OLS FM-OLS

Australia 0.035 0.037 5.836 10.884 -0.363 -0.645 3,113 4,609

(7.338) (8.046) (1.644) (2.483) (-1.942) (-2.756)

Austria -0.014 -0.014 7.124 10.652 -0.335 -0.535 40,924 21,178

(-2.439) (-3.034) (2.079) (3.424) (-1.800) (-3.069)

Belgium -0.007 -0.005 13.689 19.890 -0.726 -1.072 12,435 10,691

(-3.871) (-3.264) (9.326) (14.576) (-9.270) (-14.727)

Canada 0.004 0.004 15.758 18.065 -0.854 -0.982 10,187 9,852

(0.749) (0.523) (8.105) (10.148) (-7.730) (-10.430)

Denmark -0.004 0.001 11.083 12.768 -0.554 -0.661 22,216 15,734

(-0.801) (0.241) (9.502) (10.408) (-9.987) (-11.202)

Finland -0.037 -0.029 18.184 16.964 -0.870 -0.816 34,472 32,495

(-3.279) (-3.165) (8.975) (7.907) (-8.850) (-7.363)

France -0.001 0.000 9.946 13.292 -0.532 -0.722 11,517 9,895

(-0.899) (0.092) (12.400) (15.287) (-12.094) (-15.336)

Germany -0.002 -0.001 9.956 14.071 -0.540 -0.774 10,164 8,880

(-0.846) (-0.255) (8.561) (9.275) (-7.969) (-9.251)

Italy -0.005 0.002 7.785 5.846 -0.355 -0.259 58,677 80,794

(-0.416) (0.269) (2.274) (2.317) (-2.059) (-1.890)

Japan 0.021 0.013 12.735 14.721 -0.720 -0.823 6,922 7,652

(2.144) (0.888) (4.365) (4.085) (-4.116) (-4.228)

Netherlands 0.003 0.007 9.749 13.077 -0.507 -0.702 14,921 11,113

(2.017) (4.235) (9.610) (10.709) (-9.170) (-10.570)

New Zealand 0.003 0.023 2.058 -1.840 -0.080 0.065 391,430 1.3×106

(0.419) (4.588) (0.573) (-0.448) (-0.403) (0.290)

Norway 0.043 0.071 -5.599 -10.302 0.273 0.479 28,804 46,640

(2.723) (5.918) (-2.040) (-3.557) (2.180) (3.348)

Portugal 0.022 0.024 -3.989 -3.707 0.262 0.244 2,013 2,017

(1.977) (3.823) (-1.732) (-1.353) (2.213) (1.558)

Spain 0.010 0.008 6.253 10.537 -0.320 -0.569 17,419 10,415

(2.526) (2.799) (3.026) (4.581) (-2.825) (-4.328)

Sweden -0.005 0.002 12.588 14.337 -0.654 -0.769 15,128 11,190

(-0.664) (0.164) (5.181) (5.368) (-4.893) (-5.581)

Switzerland -0.008 -0.014 5.849 11.745 -0.251 -0.559 116,343 36,243

(-1.079) (-1.748) (2.802) (5.501) (-2.095) (-5.101)

UK -0.005 -0.006 8.097 16.996 -0.427 -0.914 13,080 10,904

(-3.064) (-3.569) (6.900) (16.014) (-7.170) (-16.899)

USA 0.000 -0.002 11.547 16.502 -0.603 -0.865 14,390 13,879

(0.082) (-0.373) (8.587) (12.148) (-8.654) (-12.679)

[ Note] Estimation results for (19). The sample period is 1870 − 2000 with the exception of New Zealand
where the sample starts in 1878. The t-statistics, in parentheses, are computed using the HAC estimator of
Newey and West (1987) for the OLS estimator and for the FM-OLS estimator the t-statistics are computed
as described in the text. The turning points are computed as exp

(
− β̂1

2β̂2

)
. In bold we indicate the countries

for which the null hypothesis of correct specification has not been rejected at the 5% level using the LM test
as described in the text.
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Table 13: Estimation Results for SO2 Emissions for the Quadratic Specification (19)

δ̂ β̂1 β̂2 Turning Point

Country OLS FM-OLS OLS FM-OLS OLS FM-OLS OLS FM-OLS

Australia 0.018 0.020 -1.593 -0.487 0.070 0.003 92,885 3.7×1032

(3.126) (3.875) (-0.419) (-0.100) (0.356) (0.012)

Austria -0.022 -0.025 23.024 25.844 -1.276 -1.427 8,279 8,582

(-4.202) (-5.735) (5.703) (8.511) (-5.734) (-8.389)

Belgium -0.008 -0.010 32.356 35.757 -1.781 -1.965 8,817 8,931

(-2.667) (-2.739) (10.525) (12.035) (-10.832) (-12.401)

Canada 0.010 0.011 23.530 24.533 -1.347 -1.406 6,195 6,167

(3.036) ( 2.855) (30.730) (30.065) (-32.072) (-32.562)

Denmark -0.055 -0.062 29.075 30.716 -1.442 -1.516 23,888 25,109

(-4.243) (-4.755) (6.219) (9.259) (-6.158) (-9.505)

Finland 0.005 -0.004 26.933 28.370 -1.501 -1.564 7,870 8,688

(0.263) (-0.326) (6.050) (9.121) (-6.767) (-9.728)

France -0.000 -0.002 18.923 19.737 -1.047 -1.088 8,421 8,665

(-0.099) (-0.464) (7.546) (9.064) (-7.776) (-9.227)

Germany -0.004 -0.007 16.737 20.010 -0.943 -1.120 7,140 7,585

(-0.562) (-1.171) (3.580) (6.450) (-3.620) (-6.547)

Italy -0.029 -0.029 14.101 12.855 -0.680 -0.608 31,918 38,755

(-2.351) (-3.511) (3.138) (4.039) (-2.871) (-3.524)

Japan -0.001 -0.006 17.880 18.498 -1.042 -1.070 5,309 5,674

(-0.175) (-0.690) (10.654) (8.540) (-10.931) (-9.146)

Netherlands -0.002 -0.005 30.880 34.213 -1.721 -1.897 7,873 8,240

(-0.555) (-1.395) (8.038) (12.442) (-8.357) (-12.689)

New Zealand 0.010 0.010 23.437 26.999 -1.361 -1.560 5,477 5,719

(1.559) ( 2.075) (6.625) (6.155) (-7.229) (-6.534)

Norway -0.012 -0.006 23.289 21.713 -1.290 -1.214 8,303 7,636

(-0.848) (-0.643) (9.552) (9.259) (-11.687) (-10.480)

Portugal 0.012 0.009 0.698 1.814 0.002 -0.060 0 3.8×106

(2.514) (2.296) (0.449) (0.996) (0.024) (-0.576)

Spain 0.003 0.002 11.185 12.762 -0.624 -0.714 7,843 7,615

(1.205) ( 0.640) (5.885) (5.100) (-5.728) (-4.987)

Sweden -0.039 -0.042 38.474 39.419 -2.072 -2.117 10,778 11,030

(-2.824) (-3.914) (10.555) (13.148) (-11.280) (-13.690)

Switzerland -0.067 -0.081 28.611 31.887 -1.395 -1.539 28,336 31,564

(-5.013) (-7.771) (9.403) (11.627) (-9.321) (-10.926)

UK -0.009 -0.012 26.912 32.034 -1.474 -1.747 9,209 9,564

(-2.086) (-2.437) (6.114) (10.127) (-6.347) (-10.840)

USA -0.012 -0.013 17.820 20.049 -0.947 -1.063 12,221 12,437

(-3.663) (-2.308) (14.809) (12.861) (-14.478) (-13.579)

[ Note] Estimation results for (19). The sample period is 1870 − 2000. The t-statistics, in parentheses, are
computed using the HAC estimator of Newey and West (1987) for the OLS estimator and for the FM-
OLS estimator the t-statistics are computed as described in the text. The turning points are computed as
exp

(
− β̂1

2β̂2

)
. In bold we indicate the countries for which the null hypothesis of correct specification has not

been rejected at the 5% level using the LM test as described in the text.
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and to a much smaller number of rejections than the Choi and Saikkonen (2005) test.

Table 14: Specification Test Results for the Cubic Specification (20)

CO2 SO2
Tests: (1) (2) (3) (4) (1) (2) (3) (4)

Australia 0.133 0(1) 0(1) 0.000 0.726 1(1) 1(1) 0.000
Austria 0.718 0(0) 0(0) 0.084 0.004 0(0) 0(0) 0.023
Belgium 0.338 1(1) 1(1) 0.000 0.714 0(1) 0(1) 0.012
Canada 0.002 0(0) 0(0) 0.042 0.892 0(0) 0(0) 0.096
Denmark 0.000 0(1) 0(1) 0.001 0.000 0(0) 0(0) 0.037
Finland 0.881 0(0) 0(0) 0.093 0.216 0(0) 0(0) 0.014
France 0.027 1(1) 1(1) 0.000 0.002 0(0) 0(0) 0.052
Germany 0.002 1(1) 1(1) 0.002 0.000 0(1) 0(1) 0.015
Italy 0.193 0(0) 0(0) 0.002 0.042 1(1) 1(1) 0.011
Japan 0.000 0(0) 0(0) 0.129 0.001 0(0) 0(0) 0.007
Netherlands 0.038 1(1) 1(1) 0.008 0.749 0(0) 0(0) 0.020
New Zealand 0.099 1(1) 1(1) 0.000 0.815 0(0) 0(0) 0.046
Norway 0.014 0(0) 0(0) 0.027 0.016 0(0) 0(0) 0.078
Portugal 0.001 1(1) 1(1) 0.004 0.001 1(1) 1(1) 0.003
Spain 0.506 0(0) 0(0) 0.008 0.097 1(1) 1(1) 0.019
Sweden 0.001 0(0) 0(0) 0.249 0.000 0(0) 0(0) 0.277
Switzerland 0.379 1(1) 1(1) 0.001 0.006 0(0) 0(0) 0.468
UK 0.445 1(1) 1(1) 0.000 0.037 1(1) 1(1) 0.001
USA 0.759 1(1) 1(1) 0.000 0.631 1(1) 1(1) 0.075

[Note] Test results for four specification tests of equation (20). The four tests are given by (1) LM test (p-
value is reported), (2) Simes (1986) test where 1 indicates rejection and 0 non-rejection, (3) Rom (1990) test
where 1 indicates rejection and 0 non-rejection and (4) Choi and Saikkonen (2005) test (p-value is reported).
For tests (2) and (3) the numbers outside the brackets correspond to α = 5% and the numbers in brackets
to α = 10%.

A comparison with the scatterplots displayed in Figure 3 shows that for the countries for which

the quadratic specification is rejected but the cubic specification is not rejected by the LM test

the scatterplots display asymmetrically shaped relatively smooth relationships with a substantial

amount of observations in the upward and downward parts of the relationship. Thus, it appears

that the estimation results and subsequently also the test results hinge upon the availability of

enough observations spread out over the range of the potential relationship.

The estimation results for the cubic specification are displayed in Tables 15 and 16 in Appendix B.

For SO2 emissions the turning points for Belgium, the Netherlands and the USA are at reasonable
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in-sample values, for CO2 emissions turning points are present only for New Zealand, whereas

there are no turning points for Switzerland and the USA, which stems from the fact that for these

countries complex conjugate roots occur.

5 Summary and Conclusions

The fast growing literature on environmental Kuznets curves has to date ignored the econometric

implications of the presence of polynomial powers of integrated regressors in cointegrating regres-

sions. Regressions involving nonlinear transformations of integrated regressors typically require

different statistical analysis than standard linear cointegrating regressions. Based on the work of

Park and Phillips (1999; 2001) we develop estimation and testing theory for regressions including

stationary regressors, deterministic regressors and integrated regressors and their integer powers.

This setup is clearly a rather special formulation of a nonlinear relationship but it offers some

advantages. First, this setup leads to relationships that are linear in the parameters which implies

that modified OLS estimation techniques will suffice, avoiding the need to resort to nonlinear es-

timation techniques that arises in more general formulations. Note that regressions involving also

cross-products of the powers of the regressors can be studied by slightly modifying the results pre-

sented in this paper. We, however, believe that unless the application one has in mind leads one to

consider such cross-products as being important the more parsimonious formulation without cross-

products we focus on in this paper is a potentially good starting point for nonlinear cointegration

analysis, not only for EKC analysis.

It turns out that the OLS estimator of the coefficients in regression equations considered in this

paper behaves in many respects similar to the OLS estimator in linear cointegrating relationship

as studied for instance in Phillips and Hansen (1990). The OLS estimator is consistent, but its

limiting distribution is in general contaminated by second-order bias terms, which render valid

inference infeasible. As in the linear case an FM-OLS estimator with a limiting distribution that

is free of second order bias terms can be constructed. Consequently, similarly to the linear case

the FM-OLS estimator is the basis for χ2-inference on certain classes of hypotheses, including e.g.

t-statistics.

We also consider specification and cointegration testing in detail by pursuing two avenues, one

based on augmented respectively auxiliary regressions and the other one on studying KPSS type

tests. Specification analysis is based on augmented regressions, using the Wald principle, or on aux-
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iliary regressions, using the Lagrange Multiplier principle. By considering as additional regressors

additional deterministic components, higher order powers of the integrated regressors and addi-

tional integrated regressors and their integer powers allows to stay, with appropriate extensions,

in the estimation framework considered in the outset of the paper. As discussed in the paper the

tests, leading to asymptotic χ2-inference, are consistent against several forms of misspecification

of the original equation (i.e. cointegration only in the augmented setup or no cointegration even

in the augmented setup). The performance of the tests depends upon the relationship between

the additional regressors and the unknown alternative. A direct test for cointegration is based on

testing stationarity of the FM-OLS residuals of the original regression. This extends the work of

Kwiatkowski, Phillips, Schmidt, and Shin (1992) to our nonlinear setup. The asymptotic distri-

bution of this test statistic depends upon nuisance parameters related to the specification of the

equation, i.e. the included deterministic components and the integrated variables and their pow-

ers. Following Choi and Saikkonen (2005) we present a sub-sample version of the test that has

a nuisance parameter free limiting distribution. We also study in detail test procedures based on

adjusted Bonferroni bounds, as considered by Hommel (1988), Simes (1986) and Rom (1990), to

utilize the information from all the sub-sample statistics.

We investigate the performance of the proposed estimator and tests by means of a small simu-

lation study. As expected it turns out that the point estimates obtained from OLS and FM-OLS

estimation do not differ drastically, given that both estimators are consistent. However, typically

the FM-OLS estimator leads to slightly smaller biases. Bias-correction by FM-OLS estimation is, as

also expected, vital for inference, compare again Table 4 and Figure 1. The augmented respectively

auxiliary regression based tests exhibit very good size performance, with their power performance

depending upon the relationship between the additional regressors and the alternative considered.

The sub-sample KPSS type test performance is suffering, as expected, from the fact that only short

sub-samples are used. This affects also the power performance, which is not as satisfactory as for

the Wald and LM tests but is on the other hand quite independent of the alternative considered.

These findings suggest that the choice of test depends upon whether the researcher has a particular

alternative in mind. In case one has a particular alternative in mind the corresponding variables

should be used as additional regressors in the Wald or LM test. If one has no particular alterna-

tive in mind one might start by considering the KPSS type test, maybe in conjunction with the

Wald and LM tests performed for several sets of additional regressors. In this respect it might be

fruitful to study in some more detail the performance of nonlinear cointegration testing by adding
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superfluous deterministic trends as originally advocated for unit root and cointegration testing by

Park and Choi (1988) and Park (1990).

Finally, we apply the developed methods to study the relationship between log per capita GDP

and log per capita CO2 and SO2 emissions for 19 early industrialized countries over the period

1870–2000. We find evidence for the prevalence of a quadratic EKC in about half of the countries,

where for a few countries cointegration is not rejected only in the cubic specification. We find

evidence for an EKC in more countries for CO2 emissions which might partly be due to the fact

that the relationship between GDP and SO2 emissions appears to be less smooth and symmetric

then the relationship between GDP and CO2 emissions. The implied turning points based on the

FM-OLS estimates are with very few exceptions at reasonable in-sample values.
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Appendix A: Proofs

Proof of Proposition 1

The OLS estimator θ̂ in (2) can be written as

G−1(θ̂ − θ) = (GZ ′ZG)−1GZ ′u

=




Gww′wGw Gww′DGD Gww′XGX

GDD′wGw GDD′DGD GDD′XGX

GXX ′wGw GXX ′DGD GXX ′XGX



−1 


Gww′u
GDD′u
GXX ′u




⇒



Σww 0 0
0

∫
DD′ ∫

DB′
v

0
∫

BvD
′ ∫

BvB′
v



−1 


Nwu∫
DdBu∫

BvdBu + M


 .

The stated convergence results for the entries in the respective matrices are straightforward to

establish. For all components in GZ ′ZG that involve integrated processes we can use the results of

Chang, Park, and Phillips (2001, Lemma 5). Due to the assumptions made for GwW ′WGw a law

of large numbers applies. Thus it follows that



Gww′wGw Gww′DGD Gww′XGX

GDD′wGw GDD′DGD GDD′XGX

GXX ′wGw GXX ′DGD GXX ′XGX


 ⇒




Σww 0 0
0

∫
DD′ ∫

DB′
v

0
∫

BvD
′ ∫

BvB′
v


 .

It is the asymptotic orthogonality between the stationary processes and both the deterministic and

integrated processes that leads to the structure of the limiting matrix above. Using the definitions

of D̃ and B̃v the inverse can be written as




Σww 0 0
0

∫
DD′ ∫

DB′
v

0
∫

BvD
′ ∫

BvB′
v



−1

=




Σ−1
ww 0 0

0
(∫

D̃D̃′
)−1

−
(∫

D̃D̃′
)−1 ∫

DB′
v

(∫
BvB′

v

)−1

0 −
(∫

B̃vB̃′
v

)−1 ∫
BvD

′ (∫ DD′)−1
(∫

B̃vB̃′
v

)−1


 . (21)

Let us now turn to the three blocks in GZ ′u. For the first block, 1√
T

∑T
t=1 wtut, a central limit

theorem can be established using similar arguments as in Phillips and Solo (1992, Theorem 3.8 and

Lemma 5.9). The variance of the limiting normal distribution depends upon the coefficients cw,j ,

du,j , Σηη and σ2
ζ and can be derived explicitly by cumbersome computations which are available

upon request. For notational brevity we denote this random variable by Nwu. The convergence

result for the second block has been established e.g. in Park (1992, Lemma A.1(a)). A typical
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entry of the third block is given by T−
k+1
2

∑T
t=1 xk

jtut. For this quantity de Jong (2002, Lemma 1)

has established convergence to
∫

Bk
vj

dBu + kΛvju

∫
Bk−1

vj
. The result then follows by stacking the

coordinates and using the definition of M .

The result as given in the proposition for G−1
w (θ̂w − θw) now follows from straightforward multi-

plications. The results for G−1
D (θ̂D− θD) and G−1

X (θ̂X − θX) follow from using again the definitions

of D̃, B̃v, Bu.v = Bu − ΩuvΩ−1
vv Bv and the relationship

∫
B̃vdBu =

∫
B̃vdBu.v +

∫
B̃vdB′

vΩ
−1
vv Ωvu,

which completes the proof of the proposition.

Proof of Proposition 2

From the definition of θ̂+ in the main text we obtain

G−1
(
θ̂+ − θ

)
=

(
GZ ′ZG

)−1 (
GZ ′u+ −GA∗

)
,

with u+
t := ut − Ω̂uvΩ̂−1

vv vt and u+ = [u+
1 , . . . , u+

T ]′. The limit of (GZ ′ZG)−1 has already been

analyzed in the proof of Proposition 1. Therefore we only need to investigate the second matrix

above, the cross-products and the correction terms, with blocks given by



Gww′u+

GDD′u+

GXX ′u+ −GXM∗


 .

With consistent long-run variance estimators Ω̂uv and Ω̂vv we obtain for 0 ≤ r ≤ 1 that

1√
T

brT c∑

t=1

u+
t =

1√
T

brT c∑

t=1

ut − Ω̂uvΩ̂−1
vv

1√
T

brT c∑

t=1

vt

⇒ Bu(r)− ΩuvΩ−1
vv Bv(r) = Bu.v(r)

and GDD′u+ ⇒ ∫
DdBu.v. Convergence of Gww′u+ ⇒ Nwu.v, with Nwu.v normally distributed,

follows from similar arguments as the convergence of 1√
T

∑T
t=1 wtut established in Proposition 1.

Let us now consider a typical entry of the third block

T−
k+1
2

T∑

t=1

xk
jtu

+
t = T−

k+1
2

T∑

t=1

xk
jtut − Ω̂uvΩ̂−1

vv T−
k+1
2

T∑

t=1

xk
jtvt (22)

⇒
∫

Bk
vj

dBu + kΛvju

∫
Bk−1

vj
− ΩuvΩ−1

vv

(∫
Bk

vj
dBv + kΛvvj

∫
Bk−1

vj

)

⇒
∫

Bk
vj

dBu.v + k
(
Λvju − ΩuvΩ−1

vv Λvvj

) ∫
Bk−1

vj
,
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where the result concerning T−
k+1
2

∑T
t=1 xk

jtut has already been used in Proposition 1 and the

result for T−
k+1
2

∑T
t=1 xk

jtvt is contained in the proof of Lemma 4 of Hong and Phillips (2008).

Given the definition of the bias correction term M∗, it follows that the third block converges to
∫

BvdBu.v. The proposition then follows from similar calculations as in Proposition 1 by using

again the definitions of D̃ and B̃v.

Proof of Proposition 3

Denote with GR ∈ Rs×s a weighting matrix capturing the convergence rates of the coefficients

involved in the respective hypotheses formulated by the rows of R. With the formulated restriction

on the set of testable hypotheses it holds that

G−1
R R = RG−1

N ,

with GN ∈ R(q+1+p)×(q+1+p) the weighting matrix defined in Remark 2. This implies G−1
R R

(
θ̂+
N − θN

)
=

RG−1
N

(
θ̂+
N − θN

)
with G−1

N

(
θ̂+
N − θN

)
⇒ (JJ ′)−1 ∫

JdBu.v. Therefore, under the null hypothesis

we have

T =
[
G−1

R R
(
θ̂+
N − θN

)]′ [
ω̂u.vG

−1
R R

(
Z ′NZN

)−1
R′G−1

R

]−1 [
G−1

R R
(
θ̂+
N − θN

)]

=
[
RG−1

N

(
θ̂+
N − θN

)]′ [
ω̂u.vRG−1

N

(
D′D D′X
X ′D X ′X

)−1

G−1
N R′

]−1 [
RG−1

N

(
θ̂+
N − θN

)]

⇒
[
R

(∫
JJ ′

)−1 ∫
JdBu.v

]′ [
ωu.vR

(∫
JJ ′

)−1

R′
]−1 [

R

(∫
JJ ′

)−1 ∫
JdBu.v

]
,

which concludes the proof since the distribution in the above line is given by a quadratic form of

a mean zero normal mixture with variance given by the expression inverted in the middle.

Proof of Proposition 4

Clearly the result in this proposition is a special case of a hypothesis covered by Proposition 3

which leads due to the form of the restrictions to a particularly simple form of the test statistic.

In the augmented regression (10) the restriction θF = 0 corresponds to

[
0 Ib

] [
θ
θF

]
= 0.

This immediately implies that

(
R

[
Z ′NZN Z ′NF
F ′ZN F ′F

]−1

R′
)−1

= F̃ ′
N F̃N , with R =

[
0 Ib

]
and

F̃N as defined in the main text.

Proof of Proposition 5

The proof is in many respects similar to the proofs of Propositions 1 and 2 in showing that the
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correction terms given in the proposition (asymptotically) correct the second order bias terms of

the OLS estimator. Let us start by defining the weighting matrices corresponding to the additional

regressors F , i.e. let GF (T ) := diag
[
GX̄1

(T ), . . . , GX̄m
(T ), GQ1(T ), . . . , GQk

(T )
]
, with

GX̄j
(T ) :=




T−
pj+2

2

. . .

T−
pj+rj+1

2


 , GQi(T ) :=




T−1

. . .

T−
si+1

2


 .

The OLS estimate of θF̃ of (10) is given by

θ̂F̃ := (F̃ ′F̃ )−1F̃ ′û+

= GF (GF F̃ ′F̃GF )−1GF F̃ ′û+.

Next define the stacked Brownian motion vectors corresponding to the higher order polynomial

powers of xjt and to the polynomial powers of qit. For t such that limT→∞ t/T = r we consider

lim
T→∞

√
TGX̄j

(T )X̄jt = lim
T→∞




T−
pj+1

2

. . .

T−
pj+rj

2







x
pj

jt
...

x
pj+rj

jt


 =




B
pj
vj

...
B

pj+rj
vj


 =: BF

vj
(r),

lim
T→∞

√
TGQi(T )Qit = lim

T→∞




T−
1
2

. . .
T−

si
2







qit
...

qsi
it


 =




Bv∗i
...

Bsi
v∗i


 =: BF

v∗i
(r)

stacked together as BF (r) := [BF
v1

(r)′, . . . ,BF
vm

(r)′,BF
v∗1

(r)′, . . . ,BF
v∗k

(r)′]′. To establish the result

three things have to be considered, namely the asymptotic behavior of (GF F̃ ′F̃GF )−1, the asymp-

totic behavior of GF F̃ ′û+ and that the proposed correction factors annihilate the bias terms arising

in the limit of GF F̃ ′û+. Since F̃ corresponds to the regression residuals of F on Z, it is not surpris-

ing that in the limiting quantities correspondingly adjusted Brownian motions will appear. These

can be written in various forms with the most convenient one for this proposition given by

B̃F := BF −
∫

BF D̃′
(∫

D̃D̃′
)−1

D −
∫

BF B̃′
v

(∫
B̃vB̃′

v

)−1

Bv. (23)

With the just defined quantity it follows by appropriate rearrangements of terms that (GF F̃ ′F̃GF )−1 ⇒(∫
B̃F B̃F ′

)−1
. Let us next consider

GF F̃ ′û+ = GF F̃ ′
(
u+ − Z(θ̂+ − θ)

)

= GF F̃ ′u+

= GF F ′u+ −GF F ′ZG(GZ ′ZG)−1GZ ′u+,
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with the first equality following from û+ = u+−Z(θ̂+− θ), the second from F̃ ′Z = 0 and the third

from the definition of F̃ . Next we use from Proposition 2 that G−1(θ̂+ − θ) + (GZ ′ZG)−1GA∗ =

(GZ ′ZG)−1GZ ′u+ to obtain

GF F̃ ′û+ = GF F ′u+ −GF F ′ZG
(
G−1(θ̂+ − θ)− (GZ ′ZG)−1GA∗

)
. (24)

Several of the above terms have been already analyzed in Proposition 2. Using similar arguments as

in the derivation of equation (22) in Proposition 2 it follows that GF F ′u+ ⇒ ∫
BF dBu.v+OF +MF ,

with MF := [MF ′
1 , . . . , MF ′

m ,MF ′
m+1, . . . , M

F ′
m+k]

′ and

MF
j := Λ+

vju




pj

∫
B

pj−1
vj

...
(pj + rj)

∫
B

pj+rj−1
vj


 , j = 1, . . . , m

MF
m+i := Λ+

v∗i u




1
2

∫
Bv∗i
...

si

∫
Bsi−1

v∗i


 , i = 1, . . . , k

and with

OF = ΩuṽΩ−1
ṽṽ

∫
BF dBṽ − ΩuvΩ−1

vv

∫
BF dBv.

This modified results stems from the fact that Bu.v is not orthogonal to Bv∗ , which requires some ad-

ditional modifications to arrive at an orthogonalized process. Thus, define Bu.ṽ := Bu−ΩuṽΩ−1
ṽṽ Bṽ,

which is by construction orthogonal to both v and v∗. Using this quantity the relevant cross-

moments, i.e. the quantities corresponding to (22), can be written as

T−
k+1
2

T∑

t=1

xk
jtu

+
t = T−

k+1
2

T∑

t=1

xk
jtut − Ω̂uvΩ̂−1

vv T−
k+1
2

T∑

t=1

xk
jtvt (25)

⇒
∫

Bk
vj

dBu + kΛuvj

∫
Bk−1

vj
− ΩuvΩ−1

vv

(∫
Bk

vj
dBv + kΛvvj

∫
Bk−1

vj

)

⇒
∫

Bk
vj

dBu.ṽ + k
(
Λvju − ΩuvΩ−1

vv Λvvj

) ∫
Bk−1

vj

+ΩuṽΩ−1
ṽṽ

∫
Bk

vj
dBṽ − ΩuvΩ−1

vv

∫
Bk

vj
dBv
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and

T−
k+1
2

T∑

t=1

qk
itu

+
t = T−

k+1
2

T∑

t=1

qk
itut − Ω̂uvΩ̂−1

vv T−
k+1
2

T∑

t=1

qk
itvt (26)

⇒
∫

Bk
v∗i

dBu + kΛuv∗i

∫
Bk−1

v∗i
− ΩuvΩ−1

vv

(∫
Bk

v∗i
dBv + kΛvv∗i

∫
Bk−1

v∗i

)

⇒
∫

Bk
v∗i

dBu.ṽ + k
(
Λuv∗i − ΩuvΩ−1

vv Λvv∗i

) ∫
Bk−1

v∗i

+ΩuṽΩ−1
ṽṽ

∫
Bk

v∗i
dBṽ − ΩuvΩ−1

vv

∫
Bk

v∗i
dBv,

which by stacking leads to the additional bias correction term OF .

Straightforward computations show that GF F ′ZG ⇒ [
0

∫
BF D′ ∫

BFB′
v

]
. The terms in the

brackets on the right hand side of (24) have all been considered already in Proposition 2. Tedious

and lengthy computations to arrive at a useful formulation of the limiting quantity lead to

GF F̃ ′û+ ⇒
∫

B̃F dBu.v + OF + MF −
(
BF B̃′

v

)(
B̃vB̃′

v

)−1
M.

We are thus left to show that the correction terms stated in the formulation of the proposition

converge to the same limits. Therefore consider the components of

GF θ̂F̃ = (GF F̃ ′F̃GF )−1(GF F̃ ′û+ −GF OF∗ −GF MF∗ + GF kF∗M∗)

in some detail. With consistent variance estimators it holds that GF OF∗ ⇒ OF and GF MF∗ ⇒
MF . Let us next consider the last term

GF kF∗M∗ = GF F ′X̃GX(GXX̃ ′X̃GX)−1GXM∗.

From this representation we immediately obtain GF F ′X̃GX ⇒ ∫
BF B̃′

v, (GXX̃ ′X̃GX)−1 ⇒
(∫

B̃vB̃′
v

)−1

and GXM∗ ⇒ M . This implies that the asymptotic distribution of the estimator θ̂+
F̃

is under the

null hypothesis given by

G−1
F θ̂+

F̃
⇒

(∫
B̃F B̃F ′

)−1 ∫
B̃F dBu.ṽ. (27)

The asymptotic χ2 distribution of the test statistic now follows from the same arguments as used

in Propositions 3 and 4.
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Proof of Proposition 6

By definition we have û+
t = u+

t − Z ′t
(
θ̂+ − θ

)
. From the proof of Proposition 2 we already know

that 1√
T

∑brT c
t=1 u+

t ⇒ Bu.v(r) and thus we only need to investigate the second term

1√
T

brT c∑

t=1

Z ′tGG−1
(
θ̂+ − θ

)
=


 1√

T

brT c∑

t=1

[
w′tGw D′

tGD X ′
tGX

]






G−1
w (θ̂+

w − θw)
G−1

D (θ̂+
D − θD)

G−1
X (θ̂+

X − θX)




⇒ [
rE(wt)′

∫ r
0 D′ ∫ r

0 B′
v

]



Σ−1
wwNwu.v[∫

D̃D̃′
]−1 ∫

D̃dBu.v[∫
B̃vB̃′

v

]−1 ∫
B̃vdBu.v


 .

Since by assumption E(wt) = 0 it follows that

1√
T

brT c∑

t=1

û+
t ⇒ Bu.v(r)−

∫ r

0
D′

[∫
D̃D̃′

]−1 ∫
D̃dBu.v −

∫ r

0
B′

v

[∫
B̃vB̃′

v

]−1 ∫
B̃vdBu.v

= B∗
u.v(r).

This implies due to the assumption of consistency of ω̂u.v that

CT ⇒ 1
ωu.v

∫
(B∗

u.v)
2.

Proof of Proposition 7

Let 0 ≤ r ≤ 1 and i ≤ t = bbrc+ i−1 ≤ i+ b−1. Similar to the proof of Proposition 6 a functional

central limit theorem applies for the sub-sample of residuals and we obtain

1√
b

t∑

j=i

û+
j =

1√
b

t∑

j=i

u+
j +


 1√

b

t∑

j=i

Z ′jG(b)


(

G(b)−1G(T )
) (

G(T )−1(θ̂+ − θ)
)

(28)

Also similar to the proof of Proposition 6 one can show, since b → ∞ and
√

b
T → 0, that

limT→∞ 1√
b

∑t
j=i u

+
j = Bu.v(r). The first and the third bracketed terms composing the product

on the right hand side above, i.e.
(

1√
b

∑t
j=i Z

′
jG(b)

)
and

(
G(T )−1(θ̂+ − θ)

)
, converge in distribu-

tion. The term in the middle is of order O

(√
b
T

)
, which implies that the right hand side product

term in (28) is Op

(√
b
T

)
. Therefore, since by assumption

√
b
T → 0, we have established that

1√
b

∑t
j=i û

+
j ⇒ Bu.v(r). The result then follows from the assumption of consistency of ω̂u.v → ωu.v.
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Appendix B: Additional Material for the Empirical Study
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Figure 2: Time series plots of the three variables (log per capita) GDP, CO2 and SO2 emissions.
The solid lines display GDP, the upper dashed lines CO2 emissions and the lower dashed lines SO2

emissions. The two shaded areas indicate world war I (1914–1918) and world war II (1939–1945).

53



4

5

6

7

8

9

1.5

2.0

2.5

3.0

3.5

4.0

4.5

8.0 8.4 8.8 9.2 9.6 10.0 10.4

Australia

4

5

6

7

8

0

1

2

3

4

7.0 7.5 8.0 8.5 9.0 9.5 10.0

Austria

6.8

7.2

7.6

8.0

8.4

2.0

2.5

3.0

3.5

4.0

4.5

7.6 8.0 8.4 8.8 9.2 9.6 10.0

Belgium

4

5

6

7

8

9

2

3

4

5

6

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

Canada

5

6

7

8

9

0

1

2

3

4

5

7.5 8.0 8.5 9.0 9.5 10.0 10.5

Denmark

0

2

4

6

8

10

-4

-2

0

2

4

6

6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 10.0

Finland

5.5

6.0

6.5

7.0

7.5

8.0

0

1

2

3

4

7.5 8.0 8.5 9.0 9.5 10.0

France

6.0

6.5

7.0

7.5

8.0

8.5

1

2

3

4

5

7.0 7.5 8.0 8.5 9.0 9.5 10.0

Germany

3

4

5

6

7

8

-2

-1

0

1

2

3

4

7.2 7.6 8.0 8.4 8.8 9.2 9.6 10.0

Italy

-4

-2

0

2

4

6

8

-4

-2

0

2

4

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Japan

5.5

6.0

6.5

7.0

7.5

8.0

8.5

1.2

1.6

2.0

2.4

2.8

3.2

7.6 8.0 8.4 8.8 9.2 9.6 10.0 10.4

Netherlands

5.0

5.5

6.0

6.5

7.0

7.5

8.0

1.2

1.6

2.0

2.4

2.8

3.2

8.0 8.4 8.8 9.2 9.6 10.0

New Zealand

4

5

6

7

8

9

0

1

2

3

4

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

Norway

0

2

4

6

8

-2

-1

0

1

2

3

6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6

Portugal

3

4

5

6

7

8

0

1

2

3

4

7.0 7.5 8.0 8.5 9.0 9.5 10.0

Spain

4

5

6

7

8

9

0

1

2

3

4

5

7.0 7.5 8.0 8.5 9.0 9.5 10.0

Sweden

4

5

6

7

8

-1

0

1

2

3

4

7.5 8.0 8.5 9.0 9.5 10.0 10.5

Switzerland

7.2

7.4

7.6

7.8

8.0

8.2

2.0

2.5

3.0

3.5

4.0

4.5

8.0 8.4 8.8 9.2 9.6 10.0

UK

6.4

6.8

7.2

7.6

8.0

8.4

8.8

2.5

3.0

3.5

4.0

4.5

5.0

7.5 8.0 8.5 9.0 9.5 10.0 10.5

USA

C
O

2

S
O

2

C
O

2
C

O
2

C
O

2
C

O
2

S
O

2
S

O
2

S
O

2

Figure 3: Scatterplots of log per capita GDP versus log per capita CO2 and SO2 emissions. The
lines with the + symbols correspond to CO2 emissions (left scale) and the line with the full circle
symbols correspond to SO2 emissions (right scale).
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Table 15: Estimation Results for CO2 Emissions for the Cubic Specification (20)

Country δ̂ β̂1 β̂2 β̂3 Turning Points

Australia 0.035 388.196 -42.527 1.547 5,463 16,615

(7.690) (4.084) (-4.031) (3.969)

Austria -0.015 152.685 -16.998 0.634 – –

(-3.305) (2.753) (-2.646) (2.563)

Belgium -0.012 268.446 -28.950 1.041 – –

(-7.510) (11.661) (-11.224) (10.810)

Canada 0.000 200.525 -22.102 0.812 7,467 10,229

(0.064) (10.472) (-9.987) (9.548)

Denmark -0.006 86.127 -8.966 0.314 – –

(-1.229) (5.414) (-4.988) (4.622)

Finland -0.052 97.963 -10.250 0.368 – –

(-5.161) (3.793) (-3.395) (3.115)

France -0.004 127.939 -13.873 0.502 – –

(-2.391) (7.833) (-7.413) (7.029)

Germany -0.006 207.289 -23.112 0.859 6,994 8,848

(-2.461) (7.778) (-7.507) (7.257)

Italy 0.001 16.378 -1.494 0.048 – –

(0.132) (0.411) (-0.321) (0.265)

Japan -0.025 172.620 -19.784 0.758 – –

(-1.888) (6.008) (-5.762) (5.533)

Netherlands 0.006 134.432 -14.392 0.514 – –

(3.509) (5.173) (-4.912) (4.672)

New Zealand 0.020 104.900 -11.906 0.448 3,538 14,169

(4.894) (1.012) (-1.021) (1.025)

Norway 0.037 80.229 -9.556 0.374 1,845 13,373

(2.063) (1.928) (-2.060) (2.153)

Portugal 0.012 51.350 -6.314 0.261 – –

(1.272) (1.185) (-1.219) (1.262)

Spain 0.000 172.153 -19.742 0.757 – –

(0.093) (4.952) (-4.795) (4.659)

Sweden -0.034 211.025 -23.160 0.853 – –

(-2.587) (3.778) (-3.641) (3.519)

Switzerland -0.034 264.167 -29.101 1.076 – –

(-5.413) (8.386) (-8.182) (8.032)

UK -0.017 371.170 -40.188 1.452 – –

(-10.420) (21.586) (-21.101) (20.624)

USA -0.009 210.194 -22.404 0.797 – –

(-2.636) (13.685) (-13.134) (12.631)

[ Note] Estimation results for the specification et = c+δt+β1yt+β2y
2
t +β3y

3
t +ut. The sample period is 1870−

2000 with the exception of New Zealand where the sample starts in 1878. The t-statistics, in parentheses, are
computed as described in the text. The turning points, if present, are given by the exponentially transformed
real roots of the polynomial β̂1 + 2β̂2z + 3β̂3z

2 = 0. In bold we indicate the countries for which the null
hypothesis of correct specification has not been rejected at the 5% level using the LM test as described in
the text.
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Table 16: Estimation Results for SO2 Emissions for the Cubic Specification (20)

Country δ̂ β̂1 β̂2 β̂3 Turning Points

Australia 0.019 89.048 -9.938 0.367 4,009 16,983

(3.733) (0.811) (-0.816) (0.816)

Austria -0.024 -75.088 10.245 -0.448 465 8,842

(-6.087) (-1.570) (1.849) (-2.102)

Belgium -0.005 -96.788 12.873 -0.553 603 9,015

(-1.654) (-2.274) (2.699) (-3.107)

Canada 0.010 51.568 -4.534 0.120 5,950 1.3×107

(2.696) (3.471) (-2.641) (1.823)

Denmark -0.044 -138.328 17.605 -0.722 767 15,019

(-4.826) (-4.731) (5.330) (-5.788)

Finland 0.018 -50.001 7.553 -0.355 194 7,380

(1.089) (-1.194) (1.543) (-1.855)

France 0.004 -103.791 13.066 -0.540 1,167 8,749

(1.141) (-3.252) (3.573) (-3.869)

Germany -0.003 -91.247 11.733 -0.494 954 7,910

(-0.524) (-1.662) (1.850) (-2.026)

Italy -0.017 -123.204 15.339 -0.622 1,078 12,731

(-2.121) (-2.833) (3.012) (-3.133)

Japan -0.022 83.263 -8.847 0.311 31,015 5,621

(-2.432) (4.265) (-3.791) (3.340)

Netherlands -0.001 -174.476 21.594 -0.880 1,441 8,842

(-0.484) (-4.373) (4.801) (-5.214)

New Zealand 0.005 400.225 -43.612 1.579 5,784 17,257

(0.952) (3.259) (-3.152) (3.039)

Norway 0.013 -33.340 4.914 -0.229 255 6,302

(0.880) (-0.968) (1.280) (-1.593)

Portugal 0.004 26.723 -3.028 0.118 – –

(0.662) (0.905) (-0.858) (0.838)

Spain 0.003 1.810 0.585 -0.051 0 7,519

(0.748) (0.048) (0.132) (-0.293)

Sweden -0.024 -52.225 8.303 -0.397 120 9,569

(-1.621) (-0.809) (1.130) (-1.417)

Switzerland -0.074 -54.756 8.261 -0.370 145 20,497

(-6.914) (-1.018) (1.360) (-1.615)

UK -0.006 -60.385 8.415 -0.373 372 9,084

(-2.036) (-1.887) (2.374) (-2.848)

USA -0.018 148.216 -15.316 0.527 19,029 13,455

(-3.958) (7.092) (-6.599) (6.143)

[ Note] Estimation results for the specification et = c + δt + β1yt + β2y
2
t + β3y

3
t + ut. The sample period is

1870− 2000. The t-statistics, in parentheses, are computed as described in the text. The turning points, if
present, are given by the exponentially transformed real roots of the polynomial β̂1 + 2β̂2z + 3β̂3z

2 = 0. In
bold we indicate the countries for which the null hypothesis of correct specification has not been rejected at
the 5% level using the LM test as described in the text.
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